Advertisement

Communications in Mathematical Physics

, Volume 371, Issue 1, pp 99–144 | Cite as

Euler Characteristics of Crepant Resolutions of Weierstrass Models

  • Mboyo EsoleEmail author
  • Patrick Jefferson
  • Monica Jinwoo Kang
Article

Abstract

Based on an identity of Jacobi, we prove a simple formula that computes the pushforward of analytic functions of the exceptional divisor of a blowup of a projective variety along a smooth complete intersection with normal crossing. We use this pushforward formula to derive generating functions for Euler characteristics of crepant resolutions of singular Weierstrass models given by Tate’s algorithm. Since the Euler characteristic depends only on the sequence of blowups and not on the Kodaira fiber itself, several distinct Tate models have the same Euler characteristic. In the case of elliptic Calabi–Yau threefolds, using the Shioda–Tate–Wazir theorem, we also compute the Hodge numbers. For elliptically fibered Calabi–Yau fourfolds, our results also prove a conjecture of Blumenhagen, Grimm, Jurke, and Weigand based on F-theory/heterotic string duality.

Notes

Acknowledgements

The authors are grateful to Paolo Aluffi, Jim Halverson, Remke Kloosterman, Cody Long, Kenji Matsuki, Julian Salazar, Shu-Heng Shao, and Shing-Tung Yau for helpful discussions. The authors would like in particular to acknowledge Andrea Cattaneo for many useful comments and suggestions. The authors are thankful to all the participants of the workshop “A Three-Workshop Series on the Mathematics and Physics of F-theory” supported by the National Science Foundation (NSF) Grant DMS-1603247. M.E. is supported in part by the National Science Foundation (NSF) Grant DMS-1701635 “Elliptic Fibrations and String Theory”. P.J. is supported by NSF Grant PHY-1067976. P.J. would like to extend his gratitude to Cumrun Vafa for his tutelage and continued support. M.J.K. would like to acknowledge partial support from NSF Grant PHY-1352084. M.J.K. is thankful to Daniel Jafferis for his guidance and constant support.

References

  1. 1.
    Aluffi, P.: Chern classes of blow-ups. Math. Proc. Camb. Philos. Soc. 148(2), 227–242 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aluffi, P., Esole, M.: Chern class identities from tadpole matching in type IIB and F-theory. JHEP 03, 032 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Aluffi, P., Esole, M.: New orientifold weak coupling limits in F-theory. JHEP 02, 020 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Andreas, B., Curio, G.: On discrete twist and four flux in N = 1 heterotic / F theory compactifications. Adv. Theor. Math. Phys. 3, 1325–1413 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Andreas, B., Curio, G.: From local to global in F-theory model building. J. Geom. Phys. 60, 1089–1102 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Batyrev, V.V.: Birational Calabi-Yau \(n\)-folds have equal Betti numbers. In: New Trends in Algebraic Geometry (Warwick, 1996), Volume 264 of London Mathematical Society Lecture Note Series, pp. 1–11. Cambridge University Press, Cambridge (1999)Google Scholar
  7. 7.
    Batyrev, V.V., Dais, D.I.: Strong McKay correspondence, string-theoretical Hodge numbers and mirror symmetry. Topology 35(4), 901–929 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bershadsky, M., Intriligator, K.A., Kachru, S., Morrison, D.R., Sadov, V., Vafa, C.: Geometric singularities and enhanced gauge symmetries. Nucl. Phys. B 481, 215–252 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Blumenhagen, R., Grimm, T.W., Jurke, B., Weigand, T.: Global F-theory GUTs. Nucl. Phys. B829, 325–369 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Borel, A., Serre, J.-P.: Le Théorème de Riemann-Roch (French). Bull. Soc. Math. France 86, 97–136 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bott, R., Tu, L.: Differential Forms in Algebraic Topology. Spinger, New York (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Carter, R.W.: Lie Algebras of Finite and Affine Type. Cambridge Studies in Advanced Mathematics, vol. 96. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  13. 13.
    Collinucci, A., Denef, F., Esole, M.: D-brane deconstructions in IIB orientifolds. JHEP 02, 005 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cornelius Jr., E.F.: Identities for complete homogeneous symmetric polynomials. JP J. Algebra Number Theory Appl. 21(1), 109–116 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    de Boer, J., Dijkgraaf, R., Hori, K., Keurentjes, A., Morgan, J., Morrison, D.R., Sethi, S.: Triples, fluxes, and strings. Adv. Theor. Math. Phys. 4, 995–1186 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Deligne, P.: Courbes elliptiques: formulaire d’après J. Tate. In: Modular Functions of One Variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 476, pp. 53–73. Springer, Berlin (1975)Google Scholar
  17. 17.
    Denef, F.: Les Houches lectures on constructing string vacua. In: String Theory and the Real World: From Particle Physics to Astrophysics. Proceedings, Summer School in Theoretical Physics, 87th Session, Les Houches, France, 2–27 July 2007, pp. 483–610 (2008)Google Scholar
  18. 18.
    Dixon, L.J., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. 2. Nucl. Phys. B274, 285–314 (1986)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Dokchitser, T., Dokchitser, V.: A remark on Tate’s algorithm and Kodaira types. Acta Arith. 160(1), 95–100 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dolgachev, I.V.: On the purity of the degeneration loci of families of curves. Invent. Math. 8, 34–54 (1969)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dolgachev, I., Gross, M.: Elliptic threefolds. I. Ogg-Shafarevich theory. J. Algebraic Geom. 3(1), 39–80 (1994)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)zbMATHGoogle Scholar
  23. 23.
    Esole, M.: Introduction to elliptic fibrations. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes Lega, A. (eds.) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, Mathematical Physics Studies, pp 247–276. Springer, Cham (2017). https://link.springer.com/chapter/10.1007%2F978-3-319-65427-0_7
  24. 24.
    Esole, M., Fullwood, J., Yau, S.-T.: \(D_5\) elliptic fibrations: non-Kodaira fibers and new orientifold limits of F-theory. Commun. Number Theory Phys. 09(3), 583 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Esole, M., Jackson, S.G., Jagadeesan, R., Noël, A.G.: Incidence Geometry in a Weyl Chamber I: \(\text{GL}_n\). arXiv:1508.03038 [math.RT]
  26. 26.
    Esole, M., Jackson, S.G., Jagadeesan, R., Noël, A.G.: Incidence Geometry in a Weyl Chamber II: \(\text{ SL }_n\) (2015). arXiv:1601.05070 [math.RT]
  27. 27.
    Esole, M., Jagadeesan, R., Kang, M.J.: The Geometry of \(\text{ G }_2\), Spin(7), and Spin(8)-models. arXiv:1709.04913 [hep-th]
  28. 28.
    Esole, M., Jefferson, P.: The Geometry of SO(3), SO(5), and SO(6) models. arXiv:1905.12620 [hep-th]
  29. 29.
    Esole, M., Kang, M.J., Yau, S.-T.: A New Model for Elliptic Fibrations with a Rank One Mordell-Weil Group: I. Singular Fibers and Semi-Stable Degenerations. arXiv:1410.0003 [hep-th]
  30. 30.
    Esole, M., Pasterski, S.: \(\text{ D }_4\)-flops of the \(\text{ E }_7\)-model. arXiv:1901.00093 [hep-th]
  31. 31.
    Esole, M., Shao, S.H.: M-theory on Elliptic Calabi-Yau Threefolds and 6d Anomalies. arXiv:1504.01387 [hep-th]
  32. 32.
    Esole, M., Shao, S.-H., Yau, S.-T.: Singularities and gauge theory phases. Adv. Theor. Math. Phys. 19, 1183–1247 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Esole, M., Shao, S.-H., Yau, S.-T.: Singularities and gauge theory phases II. Adv. Theor. Math. Phys. 20, 683–749 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Esole, M., Yau, S.-T.: Small resolutions of SU(5)-models in F-theory. Adv. Theor. Math. Phys. 17, 1195–1253 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Fullwood, J.: On generalized Sethi–Vafa–Witten formulas. J. Math. Phys. 52, 082304 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Fullwood, J., van Hoeij, M.: On stringy invariants of GUT vacua. Commun. Numer Theory Phys. 07, 551–579 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Fulton, W.: Intersection Theory, 2nd edn. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  38. 38.
    Grassi, A., Morrison, D.R.: Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds. J. Algebraic Geom. 12(2), 321–356 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gustafson, R., Milne, S.: Schur functions, Good’s identity, and hypergeometric series well poised in su(n). Adv. Math. 48(2), 177–188 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hayashi, H., Lawrie, C., Morrison, D.R., Schafer-Nameki, S.: Box graphs and singular fibers. JHEP 1405, 048 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd edn. Springer, New York (1978)zbMATHGoogle Scholar
  42. 42.
    Papadopoulos, I.: Sur la classification de Néron des courbes elliptiques en caractérisque résiduelle \(2\) et \(3\). J. Number Theory 44, 119–152 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Intriligator, K.A., Morrison, D.R., Seiberg, N.: Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces. Nucl. Phys. B 497, 56–100 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Jacobi, C.G.: Disquisitiones Analyticae de Fractionibus Simplicibus. Ph.D. thesis, Humboldt-Universität zu Berlin (1825)Google Scholar
  45. 45.
    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
  46. 46.
    Katz, S., Morrison, D.R., Schafer-Nameki, S., Sully, J.: Tate’s algorithm and F-theory. JHEP 1108, 094 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Kodaira, K.: On compact analytic surfaces. II. Ann. Math. (2) 77, 563–626 (1963) zbMATHCrossRefGoogle Scholar
  48. 48.
    Kodaira, K.: On compact analytic surfaces. III. Ann. Math. (2) 78, 1–40 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Kontsevich, M.: String Cohomology. Lecture at Orsay (1995)Google Scholar
  50. 50.
    Lascu, A.T., Scott, D.B.: An algebraic correspondence with applications to projective bundles and blowing up Chern classes. Ann. Mat. Pura Appl. 4(102), 1–36 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Lascu, A.T., Scott, D.B.: A simple proof of the formula for the blowing up of Chern classes. Am. J. Math. 100(2), 293–301 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002). (Translated from the French by Reinie Erné, Oxford Science Publications) zbMATHGoogle Scholar
  53. 53.
    Louck, J.D., Biedenharn, L.C.: Canonical unit adjoint tensor operators in u(n). J. Math. Phys. 11, 2368–2414 (1970)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Macdonald, I.G.: Affine root systems and Dedekind’s \(\eta \)-function. Invent. Math. 15, 91–143 (1972)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Marsano, J., Schafer-Nameki, S.: Yukawas, G-flux, and spectral covers from resolved Calabi-Yau’s. JHEP 11, 098 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Matsuki, K.: Introduction to the Mori Program. Springer, Berlin (2013)zbMATHGoogle Scholar
  57. 57.
    Mayrhofer, C., Morrison, D.R., Till, O., Weigand, T.: Mordell-Weil torsion and the global structure of gauge groups in F-theory. JHEP 1410, 16 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Miranda, R.: Smooth models for elliptic threefolds. In: The Birational Geometry of Degenerations (Cambridge, MA, 1981), Progress Mathematics, vol. 29, pp. 85–133. Birkhäuser Boston (1983)Google Scholar
  59. 59.
    Morrison, D.R., Vafa, C.: Compactifications of F theory on Calabi-Yau threefolds. 1. Nucl. Phys. B 473, 74–92 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Morrison, D.R., Vafa, C.: Compactifications of F theory on Calabi-Yau threefolds. 2. Nucl. Phys. B 476, 437–469 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Mumford, D., Suominen, K.: Introduction to the theory of moduli. In: Algebraic Geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math.), pp. 171–222. Wolters-Noordhoff, Groningen (1972)Google Scholar
  62. 62.
    Nakayama, N.: Global structure of an elliptic fibration. Publ. Res. Inst. Math. Sci. 38(3), 451–649 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Nakayama, N.: Local structure of an elliptic fibration. In: Higher Dimensional Birational Geometry (Kyoto, 1997), Advanced Studies in Pure Mathematics, vol. 35, pp. 185–295. Mathematical Society of Japan, Tokyo (2002)Google Scholar
  64. 64.
    Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ. Math. No. 21, 128 (1964)zbMATHGoogle Scholar
  65. 65.
    Park, D.S.: Anomaly equations and intersection theory. JHEP 01, 093 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Porteous, I.R.: Blowing up Chern classes. Proc. Camb. Philos. Soc. 56, 118–124 (1960)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Rössler, D.: Top Chern Class = Euler Characteristic (version: 23 August 2011). https://mathoverflow.net/q/73474
  68. 68.
    Sethi, S., Vafa, C., Witten, E.: Constraints on low dimensional string compactifications. Nucl. Phys. B 480, 213–224 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)zbMATHCrossRefGoogle Scholar
  70. 70.
    Stanley, R. P.: Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey FominGoogle Scholar
  71. 71.
    Szydlo, M.G.: Flat regular models of elliptic schemes. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Harvard University (1999)Google Scholar
  72. 72.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 476, pp. 33–52. Springer, Berlin (1975)Google Scholar
  73. 73.
    Vafa, C.: Evidence for F theory. Nucl. Phys. B469, 403–418 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry I. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  75. 75.
    Wazir, R.: Arithmetic on elliptic threefolds. Compos. Math. 140(03), 567–580 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA
  2. 2.Department of Physics, Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations