Advertisement

Communications in Mathematical Physics

, Volume 371, Issue 1, pp 197–265 | Cite as

Gauge Enhancement of Super M-Branes Via Parametrized Stable Homotopy Theory

  • Vincent Braunack-Mayer
  • Hisham Sati
  • Urs SchreiberEmail author
Article

Abstract

A key open problem in M-theory is to explain the mechanism of “gauge enhancement” through which M-branes exhibit the nonabelian gauge degrees of freedom seen perturbatively in the limit of 10d string theory. In fact, since only the twisted K-theory classes represented by nonabelian Chan–Paton gauge fields on D-branes have an invariant meaning, the problem is really the understanding the M-theory lift of the classification of D-brane charges by twisted K-theory. Here we show that this problem has a solution by universal constructions in rational super homotopy theory. We recall how double dimensional reduction of super M-brane charges is described by the cyclification adjunction applied to the 4-sphere, and how M-theory degrees of freedom hidden at ADE singularities are induced by the suspended Hopf action on the 4-sphere. Combining these, we demonstrate that, in the approximation of rational homotopy theory, gauge enhancement in M-theory is exhibited by lifting against the fiberwise stabilization of the unit of this cyclification adjunction on the A-type orbispace of the 4-sphere. This explains how the fundamental D6 and D8 brane cocycles can be lifted from twisted K-theory to a cohomology theory for M-brane charge, at least rationally.

Notes

Acknowledgements

We are grateful to Augustí Roig and Martintxo Saralegi-Aranguren for discussion of [RS00], as well as to David Corfield, Ted Erler, Domenico Fiorenza, and David Roberts for useful comments. We also thank the anonymous referee for their careful reading and helpful suggestions. VBM acknowledges partial support of SNF Grant No. 200020_172498/1. This research was partly supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation, and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology).

References

  1. [AG04]
    Acharya, B.S., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). arXiv:hep-th/0409191 ADSMathSciNetCrossRefGoogle Scholar
  2. [AETW87]
    Achúcarro, A., Evans, J., Townsend, P., Wiltshire, D.: Super \(p\)-branes. Phys. Lett. B 198, 441–446 (1987). [spire:22286]Google Scholar
  3. [ABJM08]
    Aharony, O., Bergman, O., Jafferis, D., Maldacena, J.: \(N=6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). arXiv:0806.1218 CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. [AGM+99]
    Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [ABG10]
    Ando, M., Blumberg, A., Gepner, D.: Twists of \(K\)-theory and \(TMF\). In: Superstrings, Geometry, Topology, and \(C^*\)-Algebras, Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 27–63. American Mathematical Society, Providence, RI (2010) arXiv:1002.3004
  6. [ABG+14]
    Ando, M., Blumberg, A., Gepner, D., Hopkins, M.J., Rezk, C.: An \(\infty \)-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology. J. Topol. 7, 869–893 (2014). arXiv:1403.4325 CrossRefMathSciNetzbMATHGoogle Scholar
  7. [AS05]
    Atiyah, M., Segal, G.: Twisted K-theory and cohomology. In: Inspired By SS Chern, Nankai Tracts in Mathematics, vol. 11, pp. 5–43. World Scientific Publishing, Hackensack, NJ (2006). arXiv:math/0510674
  8. [BL08]
    Bagger, J., Lambert, N.D.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  9. [BLM+13]
    Bagger, J., Lambert, N., Mukhi, S., Papageorgakis, C.: Multiple membranes in M-theory. Phys. Rep. 527, 1–100 (2013). arXiv:1203.3546 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. [BLN+97]
    Bandos, I., Lechner, K., Nurmagambetov, A., Pasti, P., Sorokin, D., Tonin, M.: Covariant action for the super-five-brane of M-theory. Phys. Rev. Lett. 78, 4332–4334 (1997). arXiv:hep-th/9701149 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [BBS06]
    Becker, K., Becker, M., Schwarz, J.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
  12. [BS03]
    Berkovits, N., Schnabl, M.: Yang–Mills action from open superstring field theory. J. High Energy Phys. 0309, 022 (2003). arXiv:hep-th/0307019 ADSMathSciNetCrossRefGoogle Scholar
  13. [BV05]
    Bergman, A., Varadarajan, U.: Loop groups, Kaluza–Klein reduction and M-theory. J. High Energy Phys. 0506, 043 (2005). arXiv:hep-th/0406218 ADSMathSciNetCrossRefGoogle Scholar
  14. [BRG+96]
    Bergshoeff, E., de Roo, M., Green, M., Papadopoulos, G., Townsend, P.: Duality of Type II 7-branes and 8-branes. Nucl. Phys. B 470, 113–135 (1996). arXiv:hep-th/9601150 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [BST87]
    Bergshoeff, E., Sezgin, E., Townsend, P.K.: Supermembranes and eleven-dimensional supergravity. Phys. Lett. B 189, 75–78 (1987). [spire:248230]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [Bl17]
    Blumberg, A.: Equivariant Homotopy Theory. Lecture Notes (2017). https://github.com/adebray/equivariant_homotopy_theory
  17. [Bo94]
    Borceux, F.: Basic Category Theory, vol. 1 of Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1995)Google Scholar
  18. [BG76]
    Bousfield, A., Guggenheim, V.: On PL deRham Theory and Rational Homotopy Type, Memoirs of the AMS, vol. 179. American Mathematical Society, Providence, RI (1976)Google Scholar
  19. [BCM+02]
    Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). arXiv:hep-th/0106194 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [BEV03]
    Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. [BM00]
    Bouwknegt, P., Mathai, V.: D-branes, B-fields and twisted K-theory. J. High Energy Phys. 0003, 007 (2000). arXiv:hep-th/0002023 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. [BM18]
    Braunack-Mayer, V.: Rational parametrised stable homotopy theory, PhD thesis, Zurich University (2018) https://ncatlab.org/schreiber/show/thesis+Braunack-Mayer
  23. [BM19a]
    Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra I (in preparation) Google Scholar
  24. [BM19b]
    Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra II (in preparation) Google Scholar
  25. [BFR13]
    Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345, 741–779 (2016). arXiv:1306.1058 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [BN14]
    Bunke, U., Nikolaus, T.: Twisted differential cohomology. arXiv:1406.3231
  27. [BGK18]
    Buschmann, M., Gonzalez, E., Kane, G.L.: Revisiting Gluinos at LHC. arXiv:1803.04394
  28. [CS09]
    Callister, A.K., Smith, D.J.: Topological charges in \(\text{ SL }(2,\mathbb{R})\) covariant massive 11-dimensional and Type IIB SUGRA. Phys. Rev. D 80, 125035 (2009). arXiv:0907.3614 CrossRefADSMathSciNetGoogle Scholar
  29. [CL94]
    Candiello, A., Lechner, K.: Duality in supergravity theories. Nucl. Phys. B 412, 479–501 (1994). arXiv:hep-th/9309143 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. [ČS09]
    Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)zbMATHCrossRefGoogle Scholar
  31. [Ca23]
    Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Ann. scient. de l’Ecole Normale Supérieure, Sér. 3 40, 325–412 (1923)Google Scholar
  32. [CDF91]
    Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings–A Geometric Perspective. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
  33. [CGN+97]
    Cederwall, M., von Gussich, A., Nilsson, B.E.W., Sundell, P., Westerberg, A.: The Dirichlet super-p-branes in ten-dimensional Type IIA and IIB supergravity. Nucl. Phys. B 490, 179–201 (1997). [hep-th/9611159]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [CS00]
    Chamseddine, A.H., Sabra, W.A.: \(D=7\) \({\rm SU}(2)\) gauged supergravity from \(D=10\) supergravity. Phys. Lett. B 476, 415–419 (2000). arXiv:hep-th/9911180 CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. [CAI+00]
    Chryssomalakos, C., de Azcárraga, J., Izquierdo, J., Pérez Bueno, C.: The geometry of branes and extended superspaces. Nucl. Phys. B 567, 293–330 (2000). arXiv:hep-th/9904137 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [ClayMP]
    Clay Mathematics Institute, Yang–Mills and Mass Gap http://claymath.org/millennium-problems/yang-mills-and-mass-gap
  37. [CST03]
    Coletti, E., Sigalov, I., Taylor, W.: Abelian and nonabelian vector field effective actions from string field theory. J. High Energy Phys. 0309, 050 (2003). arXiv:hep-th/0306041 ADSMathSciNetCrossRefGoogle Scholar
  38. [CJ98]
    Crabb, M., James, I.: Fibrewise Homotopy Theory. Springer, London Ltd, London (1998)zbMATHCrossRefGoogle Scholar
  39. [CLL+00]
    Cvetic, M., Liu, J.T., Lü, H., Pope, C.N.: Domain-wall supergravities from sphere reduction. Nucl. Phys. B 560, 230–256 (1999). arXiv:hep-th/0005137 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [CLP00]
    Cvetic, M., Lü, H., Pope, C.N.: Consistent Kaluza–Klein sphere reductions. Phys. Rev. D 62, 064028 (2000). arXiv:hep-th/0003286 ADSMathSciNetCrossRefGoogle Scholar
  41. [CLP+00]
    Cvetic, M., Lü, H., Pope, C.N., Sadrzadeh, A., Tran, T.A.: \(S^3\) and \(S^4\) reductions of type IIA supergravity. Nucl. Phys. B 590, 233–251 (2000). arXiv:hep-th/0005137 CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [D’AF82]
    D’Auria, R., Fré, P.: Geometric supergravity in \(D = 11\) and its hidden supergroup. Nucl. Phys. B 201, 101–140 (1982). https://ncatlab.org/nlab/files/GeometricSupergravity.pdf
  43. [AT89]
    de Azcárraga, J., Townsend, P.: Superspace geometry and the classification of supersymmetric extended objects. Phys. Rev. Lett. 62, 2579–2582 (1989). [spire:284635]ADSMathSciNetCrossRefGoogle Scholar
  44. [DZH+15]
    Del Zotto, M., Heckman, J., Tomasiello, A., Vafa, C.: 6d conformal matter. J. High Energy Phys. 54 (2015). arXiv:1407.6359
  45. [DMW03]
    Diaconescu, D., Moore, G., Witten, E.: \(E_8\)-gauge theory and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031–1134 (2003). arXiv:hep-th/0005090 CrossRefMathSciNetGoogle Scholar
  46. [DFM09]
    Distler, J., Freed, D., Moore, G.: Orientifold Précis. In: Sati, H., Schreiber, U. (eds.) Proceedings of Symposia in Pure Mathematics, AMS (2011). arXiv:0906.0795
  47. [Do95]
    Donoghue, J.F.: Introduction to the effective field theory description of gravity. arXiv:gr-qc/9512024
  48. [duV34]
    du Val, P.: On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II and III. Proc. Camb. Philos. Soc. 30, 453–459, 460–465, 483–491 (1934)Google Scholar
  49. [Du94]
    Duff, M.: Kaluza–Klein theory in perspective. In: Proceedings of the Symposium. The Oskar Klein Centenary, World Scientific, Singapore (1994). arXiv:hep-th/9410046
  50. [Du99]
    Duff, M. (ed.): The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory. IoP, Bristol (1999)zbMATHGoogle Scholar
  51. [DIP+88]
    Duff, M., Inami, T., Pope, C., Sezgin, E., Stelle, K.: Semiclassical quantization of the supermembrane. Nucl. Phys. B 297, 515–538 (1988). [spire:247064]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [DHI+87]
    Duff, M., Howe, P., Inami, T., Stelle, K.: Superstrings in \(D =10\) from Supermembranes in \(D = 11\). Phys. Lett. B 191, 70–74 (1987). (reprinted in [Du99]). [spire:245249]Google Scholar
  53. [EE12]
    Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62, 53–60 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [Ev06]
    Evslin, J.: What does(n’t) K-theory classify? Second Modave summer school in mathematical physics arXiv:hep-th/0610328
  55. [ES06]
    Evslin, J., Sati, H.: Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045 ADSMathSciNetCrossRefGoogle Scholar
  56. [Fa17]
    Fazzi, M.: Higher-dimensional field theories from type II supergravity. arXiv:1712.04447
  57. [FOT08]
    Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  58. [FOS17]
    Figueroa-O’Farrill, J., Santi, A.: Spencer cohomology and eleven-dimensional supergravity. Commun. Math. Phys. 349, 627–660 (2017). arXiv:1511.08737 ADSzbMATHCrossRefGoogle Scholar
  59. [FOS02a]
    Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M2 and M5-branes. Adv. Theor. Math. Phys. 6, 703–793 (2003). arXiv:hep-th/0208107 MathSciNetCrossRefGoogle Scholar
  60. [FOS02b]
    Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M-waves and MKK-monopoles. Class. Quantum Gravity 19, 6147–6174 (2002). [hep-th/0208108]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [FOS04]
    Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of AdS backgrounds. Adv. Theor. Math. Phys. 8, 217–317 (2004). arXiv:hep-th/0401206 MathSciNetzbMATHCrossRefGoogle Scholar
  62. [FSS13]
    Fiorenza, D., Sati, H., Schreiber, U.: Super Lie \(n\)-algebra extensions, higher WZW models, and super \(p\)-branes with tensor multiplet fields. arXiv:1308.5264
  63. [FSS15b]
    Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). arXiv:1506.07557 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [FSS16a]
    Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). arXiv:1606.03206 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [FSS16b]
    Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. arXiv:1611.06536
  66. [FSS17]
    Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_\infty \)-algebras. Geom. Topol. Math. Phys. 1 (2018), special volume in tribute of Jim Stasheff and Dennis Sullivan. arXiv:1712.00758 [math-ph]
  67. [FSS18]
    Fiorenza, D., Sati, H., Schreiber, U.: Higher T-duality of M-branes. arXiv:1803.05634
  68. [FSS19]
    Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory. In: Proceedings of Higher Structures in M-Theory, Durham Symposium 2018, Fortsch. Phys. (2019)Google Scholar
  69. [Fr00]
    Freed, D.: Dirac charge quantization and generalized differential cohomology. In: Surveys in Differential Geometry. International Press, Somerville, MA, pp. 129–194. (2000) arXiv:hep-th/0011220
  70. [FH00]
    Freed, D., Hopkins, M.: On Ramond–Ramond fields and K-theory. J. High Energy Phys. 0005, 044 (2000). arXiv:hep-th/0002027 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [FW99]
    Freed, D., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189 MathSciNetzbMATHCrossRefGoogle Scholar
  72. [GM03]
    Gómez, C., Manjarín, J.J.: A note on the dyonic D6-brane. In: 6th International Workshop on Conformal Field Theory and Integrable Models. Landau Institute, Sept (2002). arXiv:hep-th/0302096
  73. [GKS+01]
    Gorbatov, E., Kaplunovsky, V.S., Sonnenschein, J., Theisen, S., Yankielowicz, S.: On heterotic orbifolds, M theory and Type I’ brane engineering. J. High Energy Phys. 0205, 015 (2002). arXiv:hep-th/0108135 ADSMathSciNetCrossRefGoogle Scholar
  74. [GS15]
    Grady, D., Sati, H.: Massey products in differential cohomology via stacks. J. Homotopy Relat. Struct. 13, 169–223 (2017). arXiv:1510.06366 MathSciNetzbMATHCrossRefGoogle Scholar
  75. [GS17]
    Grady, D., Sati, H.: Twisted differential generalized cohomology theories and their Atiyah–Hirzebruch spectral sequence. Alg. Geom. Topol. (2019) arXiv:1711.06650
  76. [GS19]
    Grady, D., Sati, H.: Ramond–Ramond fields and twisted differential K-theory. arXiv:1903.08843 (preprint)
  77. [Gu92]
    Gueven, R.: Black \(p\)-brane solutions of \(D = 11\) supergravity theory. Phys. Lett. B 276, 49–55 (1992). (reprinted in [Du99]) [spire:338203]Google Scholar
  78. [Gu65]
    Guillemin, V.: The integrability problem for \(G\)-structures. Trans. Am. Math. Soc. 116, 544–560 (1965). [jstor:1994134]MathSciNetzbMATHGoogle Scholar
  79. [Gus09]
    Gustavsson, A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009). arXiv:0709.1260 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [HW97]
    Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492, 152–190 (1997). arXiv:hep-th/9611230 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [HG07]
    Henriques, A., Gepner, D.: Homotopy theory of orbispaces. arXiv:math/0701916
  82. [He06]
    Hess, K.: Rational homotopy theory: a brief introduction. In: Interactions Between Homotopy Theory and Algebra. Contemporary Mathematics, vol. 436, pp. 175–202. arXiv:math.AT/0604626
  83. [HHR09]
    Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016). arXiv:0908.3724 MathSciNetzbMATHCrossRefGoogle Scholar
  84. [HW06]
    Hořava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996). arXiv:hep-th/9510209 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [Ho97]
    Howe, P.: Weyl superspace. Phys. Lett. B 415, 149–155 (1997). arXiv:hep-th/9707184 ADSMathSciNetCrossRefGoogle Scholar
  86. [HS17]
    Huerta, J., Schreiber, U.: M-theory from the superpoint. Lett. Math. Phys. 108, 2695–2727 (2018). arXiv:1702.01774 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  87. [HSS18]
    Huerta, J., Sati, H., Schreiber, U.: Real ADE-equivariant (co)homotopy of super M-branes, Commun. Math. Phys. (2019). arXiv:1805.05987
  88. [Hu98]
    Hull, C.M.: Massive string theories from M-theory and F-theory. J. High Energy Phys. 11, 027 (1998). arXiv:hep-th/9811021 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. [HW88]
    Hull, C.M., Warner, N.P.: Non-compact gaugings from higher dimensions. Class. Quantum Gravity 5, 1517–1530 (1988)ADSzbMATHCrossRefGoogle Scholar
  90. [IU12]
    Ibáñez, L., Uranga, A.: String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  91. [Ka17]
    Kane, G.: String Theory and the Real World. Morgan & Claypool, San Rafael (2017)zbMATHCrossRefGoogle Scholar
  92. [Kl72]
    Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen (1872) translation by M. W. Haskell, A comparative review of recent researches in geometry, Bull. New York Math. Soc. 2, (1892–1893), 215–249Google Scholar
  93. [Kö18]
    Körschgen, A.: A comparison of two models of orbispaces. Homol. Homotpy Appl. 20, 329–358 (2018). arXiv:1612.04267 [math.AT]MathSciNetzbMATHCrossRefGoogle Scholar
  94. [KS05]
    Kriz, I., Sati, H.: Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B 715, 639–664 (2005). arXiv:hep-th/0410293 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [Ku04]
    Kuhn, N.J.: Goodwillie towers and chromatic homotopy: an overview Geom. Topol. Monogr. 10, 245–279 (2007). arXiv:math/0410342 zbMATHCrossRefGoogle Scholar
  96. [LT96]
    Lechner, K., Tonin, M.: Worldvolume and target space anomalies in the \(D=10\) super-fivebrane sigma-model. Nucl. Phys. B 475, 545–561 (1996). arXiv:hep-th/9603094 CrossRefADSzbMATHGoogle Scholar
  97. [Le17]
    Lee, T.: Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge. J. Korean Phys. Soc. 71, 886–903 (2017). arXiv:1609.01473 ADSCrossRefGoogle Scholar
  98. [Lo90]
    Lott, J.: The geometry of supergravity torsion constraints. Commun. Math. Phys. 133, 563–615 (1990). see arXiv:math/0108125
  99. [Lu09]
    Lurie, J.: Higher Topos Theory. Princeton University Press, Princeton (2009). arXiv:math/0608040 zbMATHCrossRefGoogle Scholar
  100. [Lu17]
  101. [Ma04]
    Manjarín, J.J.: Topics on D-brane charges with B-fields. Int. J. Geom. Methods Mod. Phys. 1, 545–602 (2004). arXiv:hep-th/0405074 MathSciNetzbMATHCrossRefGoogle Scholar
  102. [MS04]
    Mathai, V., Sati, H.: Some relations between twisted K-theory and \(E_8\) gauge theory. J. High Energy Phys. 03, 016 (2004). arXiv:hep-th/0312033 CrossRefADSMathSciNetGoogle Scholar
  103. [MS06]
    May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory. American Mathematical Society, Providence, RI (2006)zbMATHCrossRefGoogle Scholar
  104. [MM97]
    Minasian, R., Moore, G.: K-theory and Ramond–Ramond charge. J. High Energy Phys. 9711, 002 (1997). arXiv:hep-th/9710230 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. [MZ54]
    Montgomery, D., Zippin, L.: Examples of transformation groups. Proc. Am. Math. Soc. 5, 460–465 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  106. [Mo14]
    Moore, G.: Physical Mathematics and the Future, Talk at Strings (2014). http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
  107. [MS03]
    Moore, G., Saulina, N.: T-duality, and the K-theoretic partition function of type IIA superstring theory. Nucl. Phys. B 670, 27–89 (2003). arXiv:hep-th/0206092 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  108. [MW00]
    Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energy Phys. 0005, 032 (2000). arXiv:hep-th/9912279 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [My03]
    Myers, R.C.: Nonabelian phenomena on D-branes. Class. Quantum Gravity 20, S347–S372 (2003). arXiv:hep-th/0303072 ADSzbMATHCrossRefGoogle Scholar
  110. [NV00]
    Nastase, H., Vaman, D.: On the nonlinear KK reductions on spheres of supergravity theories. Nucl. Phys. B 583, 211–236 (2000). arXiv:hep-th/0002028 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. [NVvN00]
    Nastase, H., Vaman, D., van Nieuwenhuizen, P.: Consistency of the \({\rm AdS}_7 \times S^4\) reduction and the origin of self-duality in odd dimensions. Nucl. Phys. B 581, 179–239 (2000). arXiv:hep-th/9911238 CrossRefADSMathSciNetzbMATHGoogle Scholar
  112. [NSS12]
    Nikolaus, T., Schreiber, U., Stevenson, D.: Principal \(\infty \)-bundles—general theory. J. Homotopy Relat. Struct. 10, 749–801 (2015). arXiv:1207.0248 CrossRefMathSciNetzbMATHGoogle Scholar
  113. [Pa78]
    Pao, P.S.: Nonlinear circle actions on the 4-sphere and twisting spun knots. Topology 17(3), 291–296 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  114. [PNT84]
    Pilch, K., van Nieuwenhuizen, P., Townsend, P.K.: Compactification of \(D=11\) supergravity on \(S^4\) (or \(11=7+4\), too). Nucl. Phys. B 242, 377–392 (1984)CrossRefADSMathSciNetGoogle Scholar
  115. [Po01]
    Polchinski, J.: String Theory. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  116. [Ra03]
    Ravenel, D.: Complex Cobordism and Stable Homotopy Groups of Spheres. American Mathematical Society, Providence, RI (2003). http://web.math.rochester.edu/people/faculty/doug/mu.html
  117. [Re87]
    Reid, M.: Young Person’s guide to canonical singularities. In: Bloch, S. (ed.) Algebraic Geometry—Bowdoin 1985, Part 1, Proceedings of Symposia in Pure Mathematics, 46 Part 1, pp. 345–414. American Mathematical Society, Providence, RI (1987)Google Scholar
  118. [Ro93]
    Roig, A.: Minimal resolutions and other minimal models. Publ. Matemátiques 37, 285–303 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  119. [Ro94]
    Roig, A.: Formalizability of DG modules and morphisms of CDG algebras. Ill. J. Math. 38, 434–451 (1994). [euclid:1255986724]MathSciNetzbMATHCrossRefGoogle Scholar
  120. [RS00]
    Roig, A., Saralegi-Aranguren, M.: Minimal models for non-free circle actions. Ill. J. Math. 44(4), 784–820 (2000). arXiv:math/0004141 MathSciNetzbMATHCrossRefGoogle Scholar
  121. [Sa00]
    Sakaguchi, M.: IIB-branes and new spacetime superalgebras. J. High Energy Phys. 0004, 019 (2000). arXiv:hep-th/9909143 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  122. [Sa05a]
    Sati, H.: M-theory and characteristic classes. J. High Energy Phys. 0508, 020 (2005). arXiv:hep-th/0501245 ADSMathSciNetCrossRefGoogle Scholar
  123. [Sa05b]
    Sati, H.: Flux quantization and the M-theoretic characters. Nucl. Phys. B 727, 461–470 (2005). arXiv:hep-th/0507106 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  124. [Sa06]
    Sati, H.: Duality symmetry and the form fields of M-theory. J. High Energy Phys. 0606, 062 (2006). arXiv:hep-th/0509046 ADSMathSciNetCrossRefGoogle Scholar
  125. [Sa10]
    Sati, H.: Geometric and topological structures related to M-branes, Superstrings, geometry, topology, and \(C^*\)-algebras. In: Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 181–236. American Mathematical Society, Providence, RI (2010). arXiv:1001.5020
  126. [Sa13]
    Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). arXiv:1310.1060 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  127. [SS18]
    Sati, H., Schreiber, U.: Higher T-duality of M-branes via local supersymmetry. arXiv:1805.00233
  128. [Sc15]
    Schreiber, U.: Higher Cartan Geometry, Lecture Notes, Prague (2015).https://ncatlab.org/schreiber/show/Higher+Cartan+Geometry
  129. [Sc16]
    Schreiber, U.: From the Superpoint to T-Folds, Lecture Notes, Prague (2016). https://ncatlab.org/schreiber/show/From+the+Superpoint+to+T-Folds
  130. [Sc17a]
    Schreiber, U.: Introduction to Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory
  131. [Sc17b]
    Schreiber, U.: Introduction to Stable Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1
  132. [Sc17c]
    Schreiber, U.: Super \(p\)-Brane Theory emerging from Super Homotopy Theory, Talk at String Math 17, Hamburg (2017). https://ncatlab.org/schreiber/show/StringMath2017
  133. [SS03]
    Schwede, S., Shipley, B.: Stable model categories are categories of modules. Topology 42, 103–153 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  134. [Se97]
    Sen, A.: A note on enhanced gauge symmetries in M- and string theory. J. High Energy Phys. 9709, 001 (1997). arXiv:hep-th/9707123 ADSMathSciNetCrossRefGoogle Scholar
  135. [Sh07]
    Shipley, B.: \(H \mathbb{Z}\)-algebra spectra are differential graded algebras. Am. J. Math. 129, 351–379 (2007). arXiv:math/0209215 CrossRefMathSciNetzbMATHGoogle Scholar
  136. [Sn81]
    Snaith, V.: Localized stable homotopy of some classifying spaces. Math. Proc. Camb. Philos. Soc. 89(2), 325–330 (1981)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  137. [Su77]
    Sullivan, D.: Infinitesimal computations in topology. Publ. Math. de I.H.É.S 47, 269–331 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  138. [To95a]
    Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). arXiv:hep-th/9501068 ADSMathSciNetCrossRefGoogle Scholar
  139. [To95b]
    Townsend, P.: D-branes from M-branes. Phys. Lett. B 373, 68–75 (1996). arXiv:hep-th/9512062 ADSMathSciNetCrossRefGoogle Scholar
  140. [VB85]
    Vigué-Poirrier, M., Burghelea, D.: A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differ. Geom. 22, 243–253 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  141. [We17]
    Wellen, F.: Formalizing Cartan geometry in modal homotopy type theory. PhD thesis, KIT (2017). https://ncatlab.org/schreiber/show/thesis+Wellen
  142. [Wi81]
    Witten, E.: Search for a realistic Kaluza–Klein theory. Nucl. Phys. B 186, 412–428 (1981)ADSMathSciNetCrossRefGoogle Scholar
  143. [Wi95]
    Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). arXiv:hep-th/9503124 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. [Wi96]
    Witten, E.: Bound states of strings and \(p\)-branes. Nucl. Phys. B 460, 335–350 (1996). arXiv:hep-th/9510135 CrossRefADSMathSciNetzbMATHGoogle Scholar
  145. [Wi98]
    Witten, E.: D-branes and K-theory. J. High Energy Phys. 9812, 019 (1998). arXiv:hep-th/9810188 ADSzbMATHCrossRefGoogle Scholar
  146. [Wi00]
    Witten, E.: Overview of K-theory applied to strings. Int. J. Mod. Phys. A 16, 693–706 (2001). arXiv:hep-th/0007175 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  147. [Wi12]
    Witten, E.: Superstring perturbation theory revisited. arXiv:1209.5461

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany
  2. 2.Division of Science and MathematicsNew York UniversityAbu DhabiUAE

Personalised recommendations