Gauge Enhancement of Super M-Branes Via Parametrized Stable Homotopy Theory
- 100 Downloads
- 1 Citations
Abstract
A key open problem in M-theory is to explain the mechanism of “gauge enhancement” through which M-branes exhibit the nonabelian gauge degrees of freedom seen perturbatively in the limit of 10d string theory. In fact, since only the twisted K-theory classes represented by nonabelian Chan–Paton gauge fields on D-branes have an invariant meaning, the problem is really the understanding the M-theory lift of the classification of D-brane charges by twisted K-theory. Here we show that this problem has a solution by universal constructions in rational super homotopy theory. We recall how double dimensional reduction of super M-brane charges is described by the cyclification adjunction applied to the 4-sphere, and how M-theory degrees of freedom hidden at ADE singularities are induced by the suspended Hopf action on the 4-sphere. Combining these, we demonstrate that, in the approximation of rational homotopy theory, gauge enhancement in M-theory is exhibited by lifting against the fiberwise stabilization of the unit of this cyclification adjunction on the A-type orbispace of the 4-sphere. This explains how the fundamental D6 and D8 brane cocycles can be lifted from twisted K-theory to a cohomology theory for M-brane charge, at least rationally.
Notes
Acknowledgements
We are grateful to Augustí Roig and Martintxo Saralegi-Aranguren for discussion of [RS00], as well as to David Corfield, Ted Erler, Domenico Fiorenza, and David Roberts for useful comments. We also thank the anonymous referee for their careful reading and helpful suggestions. VBM acknowledges partial support of SNF Grant No. 200020_172498/1. This research was partly supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation, and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology).
References
- [AG04]Acharya, B.S., Gukov, S.: M theory and singularities of exceptional holonomy manifolds. Phys. Rep. 392, 121–189 (2004). arXiv:hep-th/0409191 ADSMathSciNetCrossRefGoogle Scholar
- [AETW87]Achúcarro, A., Evans, J., Townsend, P., Wiltshire, D.: Super \(p\)-branes. Phys. Lett. B 198, 441–446 (1987). [spire:22286]Google Scholar
- [ABJM08]Aharony, O., Bergman, O., Jafferis, D., Maldacena, J.: \(N=6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 0810, 091 (2008). arXiv:0806.1218 CrossRefADSMathSciNetzbMATHGoogle Scholar
- [AGM+99]Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [ABG10]Ando, M., Blumberg, A., Gepner, D.: Twists of \(K\)-theory and \(TMF\). In: Superstrings, Geometry, Topology, and \(C^*\)-Algebras, Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 27–63. American Mathematical Society, Providence, RI (2010) arXiv:1002.3004
- [ABG+14]Ando, M., Blumberg, A., Gepner, D., Hopkins, M.J., Rezk, C.: An \(\infty \)-categorical approach to \(R\)-line bundles, \(R\)-module Thom spectra, and twisted \(R\)-homology. J. Topol. 7, 869–893 (2014). arXiv:1403.4325 CrossRefMathSciNetzbMATHGoogle Scholar
- [AS05]Atiyah, M., Segal, G.: Twisted K-theory and cohomology. In: Inspired By SS Chern, Nankai Tracts in Mathematics, vol. 11, pp. 5–43. World Scientific Publishing, Hackensack, NJ (2006). arXiv:math/0510674
- [BL08]Bagger, J., Lambert, N.D.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- [BLM+13]Bagger, J., Lambert, N., Mukhi, S., Papageorgakis, C.: Multiple membranes in M-theory. Phys. Rep. 527, 1–100 (2013). arXiv:1203.3546 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BLN+97]Bandos, I., Lechner, K., Nurmagambetov, A., Pasti, P., Sorokin, D., Tonin, M.: Covariant action for the super-five-brane of M-theory. Phys. Rev. Lett. 78, 4332–4334 (1997). arXiv:hep-th/9701149 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BBS06]Becker, K., Becker, M., Schwarz, J.: String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge (2006)zbMATHCrossRefGoogle Scholar
- [BS03]Berkovits, N., Schnabl, M.: Yang–Mills action from open superstring field theory. J. High Energy Phys. 0309, 022 (2003). arXiv:hep-th/0307019 ADSMathSciNetCrossRefGoogle Scholar
- [BV05]Bergman, A., Varadarajan, U.: Loop groups, Kaluza–Klein reduction and M-theory. J. High Energy Phys. 0506, 043 (2005). arXiv:hep-th/0406218 ADSMathSciNetCrossRefGoogle Scholar
- [BRG+96]Bergshoeff, E., de Roo, M., Green, M., Papadopoulos, G., Townsend, P.: Duality of Type II 7-branes and 8-branes. Nucl. Phys. B 470, 113–135 (1996). arXiv:hep-th/9601150 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BST87]Bergshoeff, E., Sezgin, E., Townsend, P.K.: Supermembranes and eleven-dimensional supergravity. Phys. Lett. B 189, 75–78 (1987). [spire:248230]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Bl17]Blumberg, A.: Equivariant Homotopy Theory. Lecture Notes (2017). https://github.com/adebray/equivariant_homotopy_theory
- [Bo94]Borceux, F.: Basic Category Theory, vol. 1 of Handbook of Categorical Algebra. Cambridge University Press, Cambridge (1995)Google Scholar
- [BG76]Bousfield, A., Guggenheim, V.: On PL deRham Theory and Rational Homotopy Type, Memoirs of the AMS, vol. 179. American Mathematical Society, Providence, RI (1976)Google Scholar
- [BCM+02]Bouwknegt, P., Carey, A.L., Mathai, V., Murray, M.K., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). arXiv:hep-th/0106194 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BEV03]Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). arXiv:hep-th/0306062 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BM00]Bouwknegt, P., Mathai, V.: D-branes, B-fields and twisted K-theory. J. High Energy Phys. 0003, 007 (2000). arXiv:hep-th/0002023 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BM18]Braunack-Mayer, V.: Rational parametrised stable homotopy theory, PhD thesis, Zurich University (2018) https://ncatlab.org/schreiber/show/thesis+Braunack-Mayer
- [BM19a]Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra I (in preparation) Google Scholar
- [BM19b]Braunack-Mayer, V.: Strict algebraic models for rational parametrised spectra II (in preparation) Google Scholar
- [BFR13]Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345, 741–779 (2016). arXiv:1306.1058 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [BN14]Bunke, U., Nikolaus, T.: Twisted differential cohomology. arXiv:1406.3231
- [BGK18]Buschmann, M., Gonzalez, E., Kane, G.L.: Revisiting Gluinos at LHC. arXiv:1803.04394
- [CS09]Callister, A.K., Smith, D.J.: Topological charges in \(\text{ SL }(2,\mathbb{R})\) covariant massive 11-dimensional and Type IIB SUGRA. Phys. Rev. D 80, 125035 (2009). arXiv:0907.3614 CrossRefADSMathSciNetGoogle Scholar
- [CL94]Candiello, A., Lechner, K.: Duality in supergravity theories. Nucl. Phys. B 412, 479–501 (1994). arXiv:hep-th/9309143 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [ČS09]Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. American Mathematical Society, Providence, RI (2009)zbMATHCrossRefGoogle Scholar
- [Ca23]Cartan, É.: Sur les variétés à connexion affine et la théorie de la relativité généralisée (première partie). Ann. scient. de l’Ecole Normale Supérieure, Sér. 3 40, 325–412 (1923)Google Scholar
- [CDF91]Castellani, L., D’Auria, R., Fré, P.: Supergravity and Superstrings–A Geometric Perspective. World Scientific, Singapore (1991)zbMATHCrossRefGoogle Scholar
- [CGN+97]Cederwall, M., von Gussich, A., Nilsson, B.E.W., Sundell, P., Westerberg, A.: The Dirichlet super-p-branes in ten-dimensional Type IIA and IIB supergravity. Nucl. Phys. B 490, 179–201 (1997). [hep-th/9611159]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [CS00]Chamseddine, A.H., Sabra, W.A.: \(D=7\) \({\rm SU}(2)\) gauged supergravity from \(D=10\) supergravity. Phys. Lett. B 476, 415–419 (2000). arXiv:hep-th/9911180 CrossRefADSMathSciNetzbMATHGoogle Scholar
- [CAI+00]Chryssomalakos, C., de Azcárraga, J., Izquierdo, J., Pérez Bueno, C.: The geometry of branes and extended superspaces. Nucl. Phys. B 567, 293–330 (2000). arXiv:hep-th/9904137 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [ClayMP]Clay Mathematics Institute, Yang–Mills and Mass Gap http://claymath.org/millennium-problems/yang-mills-and-mass-gap
- [CST03]Coletti, E., Sigalov, I., Taylor, W.: Abelian and nonabelian vector field effective actions from string field theory. J. High Energy Phys. 0309, 050 (2003). arXiv:hep-th/0306041 ADSMathSciNetCrossRefGoogle Scholar
- [CJ98]Crabb, M., James, I.: Fibrewise Homotopy Theory. Springer, London Ltd, London (1998)zbMATHCrossRefGoogle Scholar
- [CLL+00]Cvetic, M., Liu, J.T., Lü, H., Pope, C.N.: Domain-wall supergravities from sphere reduction. Nucl. Phys. B 560, 230–256 (1999). arXiv:hep-th/0005137 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [CLP00]Cvetic, M., Lü, H., Pope, C.N.: Consistent Kaluza–Klein sphere reductions. Phys. Rev. D 62, 064028 (2000). arXiv:hep-th/0003286 ADSMathSciNetCrossRefGoogle Scholar
- [CLP+00]Cvetic, M., Lü, H., Pope, C.N., Sadrzadeh, A., Tran, T.A.: \(S^3\) and \(S^4\) reductions of type IIA supergravity. Nucl. Phys. B 590, 233–251 (2000). arXiv:hep-th/0005137 CrossRefADSMathSciNetzbMATHGoogle Scholar
- [D’AF82]D’Auria, R., Fré, P.: Geometric supergravity in \(D = 11\) and its hidden supergroup. Nucl. Phys. B 201, 101–140 (1982). https://ncatlab.org/nlab/files/GeometricSupergravity.pdf
- [AT89]de Azcárraga, J., Townsend, P.: Superspace geometry and the classification of supersymmetric extended objects. Phys. Rev. Lett. 62, 2579–2582 (1989). [spire:284635]ADSMathSciNetCrossRefGoogle Scholar
- [DZH+15]Del Zotto, M., Heckman, J., Tomasiello, A., Vafa, C.: 6d conformal matter. J. High Energy Phys. 54 (2015). arXiv:1407.6359
- [DMW03]Diaconescu, D., Moore, G., Witten, E.: \(E_8\)-gauge theory and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031–1134 (2003). arXiv:hep-th/0005090 CrossRefMathSciNetGoogle Scholar
- [DFM09]Distler, J., Freed, D., Moore, G.: Orientifold Précis. In: Sati, H., Schreiber, U. (eds.) Proceedings of Symposia in Pure Mathematics, AMS (2011). arXiv:0906.0795
- [Do95]Donoghue, J.F.: Introduction to the effective field theory description of gravity. arXiv:gr-qc/9512024
- [duV34]du Val, P.: On isolated singularities of surfaces which do not affect the conditions of adjunction, I, II and III. Proc. Camb. Philos. Soc. 30, 453–459, 460–465, 483–491 (1934)Google Scholar
- [Du94]Duff, M.: Kaluza–Klein theory in perspective. In: Proceedings of the Symposium. The Oskar Klein Centenary, World Scientific, Singapore (1994). arXiv:hep-th/9410046
- [Du99]Duff, M. (ed.): The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory. IoP, Bristol (1999)zbMATHGoogle Scholar
- [DIP+88]Duff, M., Inami, T., Pope, C., Sezgin, E., Stelle, K.: Semiclassical quantization of the supermembrane. Nucl. Phys. B 297, 515–538 (1988). [spire:247064]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [DHI+87]Duff, M., Howe, P., Inami, T., Stelle, K.: Superstrings in \(D =10\) from Supermembranes in \(D = 11\). Phys. Lett. B 191, 70–74 (1987). (reprinted in [Du99]). [spire:245249]Google Scholar
- [EE12]Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62, 53–60 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Ev06]Evslin, J.: What does(n’t) K-theory classify? Second Modave summer school in mathematical physics arXiv:hep-th/0610328
- [ES06]Evslin, J., Sati, H.: Can D-branes wrap nonrepresentable cycles? J. High Energy Phys. 0610, 050 (2006). arXiv:hep-th/0607045 ADSMathSciNetCrossRefGoogle Scholar
- [Fa17]Fazzi, M.: Higher-dimensional field theories from type II supergravity. arXiv:1712.04447
- [FOT08]Félix, Y., Oprea, J., Tanré, D.: Algebraic Models in Geometry. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
- [FOS17]Figueroa-O’Farrill, J., Santi, A.: Spencer cohomology and eleven-dimensional supergravity. Commun. Math. Phys. 349, 627–660 (2017). arXiv:1511.08737 ADSzbMATHCrossRefGoogle Scholar
- [FOS02a]Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M2 and M5-branes. Adv. Theor. Math. Phys. 6, 703–793 (2003). arXiv:hep-th/0208107 MathSciNetCrossRefGoogle Scholar
- [FOS02b]Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of M-waves and MKK-monopoles. Class. Quantum Gravity 19, 6147–6174 (2002). [hep-th/0208108]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [FOS04]Figueroa-O’Farrill, J., Simón, J.: Supersymmetric Kaluza–Klein reductions of AdS backgrounds. Adv. Theor. Math. Phys. 8, 217–317 (2004). arXiv:hep-th/0401206 MathSciNetzbMATHCrossRefGoogle Scholar
- [FSS13]Fiorenza, D., Sati, H., Schreiber, U.: Super Lie \(n\)-algebra extensions, higher WZW models, and super \(p\)-branes with tensor multiplet fields. arXiv:1308.5264
- [FSS15b]Fiorenza, D., Sati, H., Schreiber, U.: The WZW term of the M5-brane and differential cohomotopy. J. Math. Phys. 56, 102301 (2015). arXiv:1506.07557 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [FSS16a]Fiorenza, D., Sati, H., Schreiber, U.: Rational sphere valued supercocycles in M-theory and type IIA string theory. J. Geom. Phys. 114, 91–108 (2017). arXiv:1606.03206 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [FSS16b]Fiorenza, D., Sati, H., Schreiber, U.: T-Duality from super Lie \(n\)-algebra cocycles for super p-branes. arXiv:1611.06536
- [FSS17]Fiorenza, D., Sati, H., Schreiber, U.: T-duality in rational homotopy theory via \(L_\infty \)-algebras. Geom. Topol. Math. Phys. 1 (2018), special volume in tribute of Jim Stasheff and Dennis Sullivan. arXiv:1712.00758 [math-ph]
- [FSS18]Fiorenza, D., Sati, H., Schreiber, U.: Higher T-duality of M-branes. arXiv:1803.05634
- [FSS19]Fiorenza, D., Sati, H., Schreiber, U.: The rational higher structure of M-theory. In: Proceedings of Higher Structures in M-Theory, Durham Symposium 2018, Fortsch. Phys. (2019)Google Scholar
- [Fr00]Freed, D.: Dirac charge quantization and generalized differential cohomology. In: Surveys in Differential Geometry. International Press, Somerville, MA, pp. 129–194. (2000) arXiv:hep-th/0011220
- [FH00]Freed, D., Hopkins, M.: On Ramond–Ramond fields and K-theory. J. High Energy Phys. 0005, 044 (2000). arXiv:hep-th/0002027 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [FW99]Freed, D., Witten, E.: Anomalies in string theory with D-branes. Asian J. Math. 3, 819–852 (1999). arXiv:hep-th/9907189 MathSciNetzbMATHCrossRefGoogle Scholar
- [GM03]Gómez, C., Manjarín, J.J.: A note on the dyonic D6-brane. In: 6th International Workshop on Conformal Field Theory and Integrable Models. Landau Institute, Sept (2002). arXiv:hep-th/0302096
- [GKS+01]Gorbatov, E., Kaplunovsky, V.S., Sonnenschein, J., Theisen, S., Yankielowicz, S.: On heterotic orbifolds, M theory and Type I’ brane engineering. J. High Energy Phys. 0205, 015 (2002). arXiv:hep-th/0108135 ADSMathSciNetCrossRefGoogle Scholar
- [GS15]Grady, D., Sati, H.: Massey products in differential cohomology via stacks. J. Homotopy Relat. Struct. 13, 169–223 (2017). arXiv:1510.06366 MathSciNetzbMATHCrossRefGoogle Scholar
- [GS17]Grady, D., Sati, H.: Twisted differential generalized cohomology theories and their Atiyah–Hirzebruch spectral sequence. Alg. Geom. Topol. (2019) arXiv:1711.06650
- [GS19]Grady, D., Sati, H.: Ramond–Ramond fields and twisted differential K-theory. arXiv:1903.08843 (preprint)
- [Gu92]Gueven, R.: Black \(p\)-brane solutions of \(D = 11\) supergravity theory. Phys. Lett. B 276, 49–55 (1992). (reprinted in [Du99]) [spire:338203]Google Scholar
- [Gu65]Guillemin, V.: The integrability problem for \(G\)-structures. Trans. Am. Math. Soc. 116, 544–560 (1965). [jstor:1994134]MathSciNetzbMATHGoogle Scholar
- [Gus09]Gustavsson, A.: Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009). arXiv:0709.1260 [hep-th]ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [HW97]Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492, 152–190 (1997). arXiv:hep-th/9611230 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [HG07]Henriques, A., Gepner, D.: Homotopy theory of orbispaces. arXiv:math/0701916
- [He06]Hess, K.: Rational homotopy theory: a brief introduction. In: Interactions Between Homotopy Theory and Algebra. Contemporary Mathematics, vol. 436, pp. 175–202. arXiv:math.AT/0604626
- [HHR09]Hill, M.A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one. Ann. Math. 184, 1–262 (2016). arXiv:0908.3724 MathSciNetzbMATHCrossRefGoogle Scholar
- [HW06]Hořava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996). arXiv:hep-th/9510209 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Ho97]Howe, P.: Weyl superspace. Phys. Lett. B 415, 149–155 (1997). arXiv:hep-th/9707184 ADSMathSciNetCrossRefGoogle Scholar
- [HS17]Huerta, J., Schreiber, U.: M-theory from the superpoint. Lett. Math. Phys. 108, 2695–2727 (2018). arXiv:1702.01774 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [HSS18]Huerta, J., Sati, H., Schreiber, U.: Real ADE-equivariant (co)homotopy of super M-branes, Commun. Math. Phys. (2019). arXiv:1805.05987
- [Hu98]Hull, C.M.: Massive string theories from M-theory and F-theory. J. High Energy Phys. 11, 027 (1998). arXiv:hep-th/9811021 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [HW88]Hull, C.M., Warner, N.P.: Non-compact gaugings from higher dimensions. Class. Quantum Gravity 5, 1517–1530 (1988)ADSzbMATHCrossRefGoogle Scholar
- [IU12]Ibáñez, L., Uranga, A.: String Theory and Particle Physics: An Introduction to String Phenomenology. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
- [Ka17]Kane, G.: String Theory and the Real World. Morgan & Claypool, San Rafael (2017)zbMATHCrossRefGoogle Scholar
- [Kl72]Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen (1872) translation by M. W. Haskell, A comparative review of recent researches in geometry, Bull. New York Math. Soc. 2, (1892–1893), 215–249Google Scholar
- [Kö18]Körschgen, A.: A comparison of two models of orbispaces. Homol. Homotpy Appl. 20, 329–358 (2018). arXiv:1612.04267 [math.AT]MathSciNetzbMATHCrossRefGoogle Scholar
- [KS05]Kriz, I., Sati, H.: Type IIB string theory, S-duality, and generalized cohomology. Nucl. Phys. B 715, 639–664 (2005). arXiv:hep-th/0410293 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Ku04]Kuhn, N.J.: Goodwillie towers and chromatic homotopy: an overview Geom. Topol. Monogr. 10, 245–279 (2007). arXiv:math/0410342 zbMATHCrossRefGoogle Scholar
- [LT96]Lechner, K., Tonin, M.: Worldvolume and target space anomalies in the \(D=10\) super-fivebrane sigma-model. Nucl. Phys. B 475, 545–561 (1996). arXiv:hep-th/9603094 CrossRefADSzbMATHGoogle Scholar
- [Le17]Lee, T.: Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge. J. Korean Phys. Soc. 71, 886–903 (2017). arXiv:1609.01473 ADSCrossRefGoogle Scholar
- [Lo90]Lott, J.: The geometry of supergravity torsion constraints. Commun. Math. Phys. 133, 563–615 (1990). see arXiv:math/0108125
- [Lu09]Lurie, J.: Higher Topos Theory. Princeton University Press, Princeton (2009). arXiv:math/0608040 zbMATHCrossRefGoogle Scholar
- [Lu17]Lurie, J.: Higher algebra. http://math.harvard.edu/~lurie/papers/HA.pdf
- [Ma04]Manjarín, J.J.: Topics on D-brane charges with B-fields. Int. J. Geom. Methods Mod. Phys. 1, 545–602 (2004). arXiv:hep-th/0405074 MathSciNetzbMATHCrossRefGoogle Scholar
- [MS04]Mathai, V., Sati, H.: Some relations between twisted K-theory and \(E_8\) gauge theory. J. High Energy Phys. 03, 016 (2004). arXiv:hep-th/0312033 CrossRefADSMathSciNetGoogle Scholar
- [MS06]May, J.P., Sigurdsson, J.: Parametrized Homotopy Theory. American Mathematical Society, Providence, RI (2006)zbMATHCrossRefGoogle Scholar
- [MM97]Minasian, R., Moore, G.: K-theory and Ramond–Ramond charge. J. High Energy Phys. 9711, 002 (1997). arXiv:hep-th/9710230 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [MZ54]Montgomery, D., Zippin, L.: Examples of transformation groups. Proc. Am. Math. Soc. 5, 460–465 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
- [Mo14]Moore, G.: Physical Mathematics and the Future, Talk at Strings (2014). http://www.physics.rutgers.edu/~gmoore/PhysicalMathematicsAndFuture.pdf
- [MS03]Moore, G., Saulina, N.: T-duality, and the K-theoretic partition function of type IIA superstring theory. Nucl. Phys. B 670, 27–89 (2003). arXiv:hep-th/0206092 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [MW00]Moore, G., Witten, E.: Self-duality, Ramond–Ramond fields, and K-theory. J. High Energy Phys. 0005, 032 (2000). arXiv:hep-th/9912279 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [My03]Myers, R.C.: Nonabelian phenomena on D-branes. Class. Quantum Gravity 20, S347–S372 (2003). arXiv:hep-th/0303072 ADSzbMATHCrossRefGoogle Scholar
- [NV00]Nastase, H., Vaman, D.: On the nonlinear KK reductions on spheres of supergravity theories. Nucl. Phys. B 583, 211–236 (2000). arXiv:hep-th/0002028 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [NVvN00]Nastase, H., Vaman, D., van Nieuwenhuizen, P.: Consistency of the \({\rm AdS}_7 \times S^4\) reduction and the origin of self-duality in odd dimensions. Nucl. Phys. B 581, 179–239 (2000). arXiv:hep-th/9911238 CrossRefADSMathSciNetzbMATHGoogle Scholar
- [NSS12]Nikolaus, T., Schreiber, U., Stevenson, D.: Principal \(\infty \)-bundles—general theory. J. Homotopy Relat. Struct. 10, 749–801 (2015). arXiv:1207.0248 CrossRefMathSciNetzbMATHGoogle Scholar
- [Pa78]Pao, P.S.: Nonlinear circle actions on the 4-sphere and twisting spun knots. Topology 17(3), 291–296 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- [PNT84]Pilch, K., van Nieuwenhuizen, P., Townsend, P.K.: Compactification of \(D=11\) supergravity on \(S^4\) (or \(11=7+4\), too). Nucl. Phys. B 242, 377–392 (1984)CrossRefADSMathSciNetGoogle Scholar
- [Po01]Polchinski, J.: String Theory. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
- [Ra03]Ravenel, D.: Complex Cobordism and Stable Homotopy Groups of Spheres. American Mathematical Society, Providence, RI (2003). http://web.math.rochester.edu/people/faculty/doug/mu.html
- [Re87]Reid, M.: Young Person’s guide to canonical singularities. In: Bloch, S. (ed.) Algebraic Geometry—Bowdoin 1985, Part 1, Proceedings of Symposia in Pure Mathematics, 46 Part 1, pp. 345–414. American Mathematical Society, Providence, RI (1987)Google Scholar
- [Ro93]Roig, A.: Minimal resolutions and other minimal models. Publ. Matemátiques 37, 285–303 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- [Ro94]Roig, A.: Formalizability of DG modules and morphisms of CDG algebras. Ill. J. Math. 38, 434–451 (1994). [euclid:1255986724]MathSciNetzbMATHCrossRefGoogle Scholar
- [RS00]Roig, A., Saralegi-Aranguren, M.: Minimal models for non-free circle actions. Ill. J. Math. 44(4), 784–820 (2000). arXiv:math/0004141 MathSciNetzbMATHCrossRefGoogle Scholar
- [Sa00]Sakaguchi, M.: IIB-branes and new spacetime superalgebras. J. High Energy Phys. 0004, 019 (2000). arXiv:hep-th/9909143 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Sa05a]Sati, H.: M-theory and characteristic classes. J. High Energy Phys. 0508, 020 (2005). arXiv:hep-th/0501245 ADSMathSciNetCrossRefGoogle Scholar
- [Sa05b]Sati, H.: Flux quantization and the M-theoretic characters. Nucl. Phys. B 727, 461–470 (2005). arXiv:hep-th/0507106 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Sa06]Sati, H.: Duality symmetry and the form fields of M-theory. J. High Energy Phys. 0606, 062 (2006). arXiv:hep-th/0509046 ADSMathSciNetCrossRefGoogle Scholar
- [Sa10]Sati, H.: Geometric and topological structures related to M-branes, Superstrings, geometry, topology, and \(C^*\)-algebras. In: Proceedings of Symposia in Pure Mathematics, vol. 81, pp. 181–236. American Mathematical Society, Providence, RI (2010). arXiv:1001.5020
- [Sa13]Sati, H.: Framed M-branes, corners, and topological invariants. J. Math. Phys. 59, 062304 (2018). arXiv:1310.1060 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [SS18]Sati, H., Schreiber, U.: Higher T-duality of M-branes via local supersymmetry. arXiv:1805.00233
- [Sc15]Schreiber, U.: Higher Cartan Geometry, Lecture Notes, Prague (2015).https://ncatlab.org/schreiber/show/Higher+Cartan+Geometry
- [Sc16]Schreiber, U.: From the Superpoint to T-Folds, Lecture Notes, Prague (2016). https://ncatlab.org/schreiber/show/From+the+Superpoint+to+T-Folds
- [Sc17a]Schreiber, U.: Introduction to Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory
- [Sc17b]Schreiber, U.: Introduction to Stable Homotopy Theory, Lecture Notes, Bonn (2017) https://ncatlab.org/nlab/show/Introduction+to+Stable+homotopy+theory+--+1
- [Sc17c]Schreiber, U.: Super \(p\)-Brane Theory emerging from Super Homotopy Theory, Talk at String Math 17, Hamburg (2017). https://ncatlab.org/schreiber/show/StringMath2017
- [SS03]Schwede, S., Shipley, B.: Stable model categories are categories of modules. Topology 42, 103–153 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- [Se97]Sen, A.: A note on enhanced gauge symmetries in M- and string theory. J. High Energy Phys. 9709, 001 (1997). arXiv:hep-th/9707123 ADSMathSciNetCrossRefGoogle Scholar
- [Sh07]Shipley, B.: \(H \mathbb{Z}\)-algebra spectra are differential graded algebras. Am. J. Math. 129, 351–379 (2007). arXiv:math/0209215 CrossRefMathSciNetzbMATHGoogle Scholar
- [Sn81]Snaith, V.: Localized stable homotopy of some classifying spaces. Math. Proc. Camb. Philos. Soc. 89(2), 325–330 (1981)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Su77]Sullivan, D.: Infinitesimal computations in topology. Publ. Math. de I.H.É.S 47, 269–331 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- [To95a]Townsend, P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184–187 (1995). arXiv:hep-th/9501068 ADSMathSciNetCrossRefGoogle Scholar
- [To95b]Townsend, P.: D-branes from M-branes. Phys. Lett. B 373, 68–75 (1996). arXiv:hep-th/9512062 ADSMathSciNetCrossRefGoogle Scholar
- [VB85]Vigué-Poirrier, M., Burghelea, D.: A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differ. Geom. 22, 243–253 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
- [We17]Wellen, F.: Formalizing Cartan geometry in modal homotopy type theory. PhD thesis, KIT (2017). https://ncatlab.org/schreiber/show/thesis+Wellen
- [Wi81]Witten, E.: Search for a realistic Kaluza–Klein theory. Nucl. Phys. B 186, 412–428 (1981)ADSMathSciNetCrossRefGoogle Scholar
- [Wi95]Witten, E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995). arXiv:hep-th/9503124 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Wi96]Witten, E.: Bound states of strings and \(p\)-branes. Nucl. Phys. B 460, 335–350 (1996). arXiv:hep-th/9510135 CrossRefADSMathSciNetzbMATHGoogle Scholar
- [Wi98]Witten, E.: D-branes and K-theory. J. High Energy Phys. 9812, 019 (1998). arXiv:hep-th/9810188 ADSzbMATHCrossRefGoogle Scholar
- [Wi00]Witten, E.: Overview of K-theory applied to strings. Int. J. Mod. Phys. A 16, 693–706 (2001). arXiv:hep-th/0007175 ADSMathSciNetzbMATHCrossRefGoogle Scholar
- [Wi12]Witten, E.: Superstring perturbation theory revisited. arXiv:1209.5461