Advertisement

Scale and Möbius Covariance in Two-Dimensional Haag–Kastler Net

  • Vincenzo Morinelli
  • Yoh TanimotoEmail author
Article

Abstract

Given a two-dimensional Haag–Kastler net which is Poincaré-dilation covariant with additional properties, we prove that it can be extended to a Möbius covariant net. Additional properties are either a certain condition on modular covariance, or a variant of strong additivity. The proof relies neither on the existence of stress-energy tensor nor any assumption on scaling dimensions. We exhibit some examples of Poincaré-dilation covariant net which cannot be extended to a Möbius covariant net, and discuss the obstructions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Yu Nakayama for interesting discussions and bibliographical information. The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

  1. Ara63.
    Araki H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4, 1343–1362 (1963).  https://doi.org/10.1063/1.1703912 ADSMathSciNetzbMATHGoogle Scholar
  2. AZ05.
    Araki H., Zsidó L.: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. Rev. Math. Phys. 17(5), 491–543 (2005) arXiv:math/0412061 MathSciNetzbMATHGoogle Scholar
  3. BDL07.
    Buchholz D., D’Antoni C., Longo R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007) arXiv:math-ph/0603083 ADSMathSciNetzbMATHGoogle Scholar
  4. BDM10.
    Bostelmann H., D’Antoni C., Morsella G.: On dilation symmetries arising from scaling limits. Commun. Math. Phys. 294(1), 21–60 (2010) arXiv:0812.4762 ADSMathSciNetzbMATHGoogle Scholar
  5. BGL93.
    Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993). http://projecteuclid.org/euclid.cmp/1104253522
  6. BGL02.
    Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14(7-8), 759–785 (2002) arXiv:math-ph/0203021 MathSciNetzbMATHGoogle Scholar
  7. Bor92.
    Borchers, H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143(2), 315–332 (1992). http://projecteuclid.org/euclid.cmp/1104248958
  8. BSM90.
    Buchholz, D., Schulz-Mirbach, H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2(1), 105–125 (1990). https://www.researchgate.net/publication/246352668
  9. BT15.
    Bischoff Marcel, Tanimoto Yoh: Integrable QFT and Longo–Witten endomorphisms. Ann. Henri Poincaré 16(2), 569–608 (2015) arXiv:1305.2171 ADSMathSciNetzbMATHGoogle Scholar
  10. CLTW12.
    Camassa P., Longo R., Tanimoto Y., Weiner M.: Thermal states in conformal QFT. II. Commun. Math. Phys. 315(3), 771–802 (2012) arXiv:1109.2064 ADSMathSciNetzbMATHGoogle Scholar
  11. Dix81.
    Dixmier, J.: von Neumann Algebras, vol. 27 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam (1981). https://books.google.com/books?id=8xSoAAAAIAAJ
  12. DL84.
    Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108
  13. DR03.
    Dütsch M., Rehren K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincaré 4(4), 613–635 (2003) arXiv:math-ph/0209035 ADSMathSciNetzbMATHGoogle Scholar
  14. DR09.
    Dorigoni, D., Rychkov, V.S.: Scale invariance + unitarity \({=>}\) conformal invariance? (2009). arXiv:0910.1087
  15. ESNR11.
    El-Showk S., Nakayama Y., Rychkov S.: What Maxwell theory in \({d\neq 4}\) teaches us about scale and conformal invariance. Nucl. Phys. B 848(3), 578–593 (2011) arXiv:1101.5385 ADSzbMATHGoogle Scholar
  16. FG94.
    Figliolini, F., Guido, D.: On the type of second quantization factors. J. Oper. Theory 31(2), 229–252 (1994). https://www.researchgate.net/publication/265588862_On_the_type_of_second_quantization_factors
  17. FJ96.
    Fredenhagen, K., Jörß, M.: Conformal Haag–Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). https://projecteuclid.org/euclid.cmp/1104286114
  18. Flo98.
    Florig M.: On Borchers’ theorem. Lett. Math. Phys. 46(4), 289–293 (1998).  https://doi.org/10.1023/A:1007546507392 MathSciNetzbMATHGoogle Scholar
  19. FST89.
    Furlan P., otkov G.M., Todorov I.T.: Two-dimensional conformal quantum field theory. Riv. Nuovo Cimento (3) 12(6), 1–202 (1989).  https://doi.org/10.1007/BF02742979 MathSciNetGoogle Scholar
  20. GF93.
    Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993). http://projecteuclid.org/euclid.cmp/1104253398
  21. GL96.
    Guido, D., Longo, R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996). http://projecteuclid.org/euclid.cmp/1104287623
  22. GLW98.
    Guido D., Longo R., Wiesbrock H.-W.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192(1), 217–244 (1998) arXiv:hep-th/9703129 ADSMathSciNetzbMATHGoogle Scholar
  23. Hal62.
    Halperin, I.: The product of projection operators. Acta Sci. Math. (Szeged) 23, 96–99 (1962) http://pub.acta.hu/acta/showCustomerVolume.action?id=7188&dataObjectType=volume&noDataSet=true&style=
  24. KL04.
    Kawahigashi Y., Longo R.: Classification of two-dimensional local conformal nets with \({c < 1}\) and 2-cohomology vanishing for tensor categories. Commun. Math. Phys. 244(1), 63–97 (2004) arXiv:math-ph/0304022 ADSMathSciNetzbMATHGoogle Scholar
  25. Koe03.
    Koester, S.: Absence of stress energy tensor in CFT 2 models (2003). arXiv:math-ph/0303053
  26. Kos02.
    Köster S.: Conformal transformations as observables. Lett. Math. Phys. 61(3), 187–198 (2002) arXiv:math-ph/0201016 MathSciNetzbMATHGoogle Scholar
  27. Lan74.
    Landau, L.J.: On local functions of fields. Commun. Math. Phys. 39, 49–62 (1974). http://projecteuclid.org/euclid.cmp/1103860121
  28. LMR16.
    Longo R., Morinelli V., Rehren K.-H.: Where infinite spin particles are localizable. Commun. Math. Phys. 345(2), 587–614 (2016) arXiv:1505.01759 ADSMathSciNetzbMATHGoogle Scholar
  29. [Lon78]
    Longo, R.: A simple proof of the existence of modular automorphisms in approximately finite-dimensional von Neumann algebras. Pacific J. Math. 75(1), 199–205 (1978). http://projecteuclid.org/euclid.pjm/1102810157
  30. Lon08.
    Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT. In: Von Neumann Algebras in Sibiu: Conference Proceedings, pp. 33–91. Theta, Bucharest (2008). https://www.mat.uniroma2.it/longo/Lecture-Notes_files/LN-Part1.pdf
  31. LRT78.
    Leyland, P., Roberts, J., Testard, D.: Duality for quantum free fields. unpublished manuscript, Marseille (1978)Google Scholar
  32. Mac77.
    Mack, G.: All unitary ray representations of the conformal group SU(2, 2) with positive energy. Commun. Math. Phys. 55(1), 1–28 (1977). https://projecteuclid.org/euclid.cmp/1103900926
  33. Mor18.
    Morinelli V.: The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions. Ann. Henri Poincaré 19(3), 937–958 (2018) arXiv:1703.06831 MathSciNetzbMATHGoogle Scholar
  34. MTW18.
    Morinelli V., Tanimoto Y., Weiner M.: Conformal covariance and the split property. Commun. Math. Phys. 357(1), 379–406 (2018) arXiv:1609.02196 ADSMathSciNetzbMATHGoogle Scholar
  35. Nak15.
    Nakayama Y.: Scale invariance vs conformal invariance. Phys. Rep. 569, 1–93 (2015) arXiv:1302.0884 ADSMathSciNetGoogle Scholar
  36. Nak18.
    Nakayama, Y.: On the realization of impossible anomalies (2018). arXiv:1804.02940
  37. Ost73.
    Osterwalder, K.: Duality for free Bose fields. Commun. Math. Phys. 29, 1–14 (1973). http://projecteuclid.org/euclid.cmp/1103858474
  38. Pol88.
    Polchinski J.: Scale and conformal invariance in quantum field theory. Nucl. Phys. B. 303(2), 226–236 (1988).  https://doi.org/10.1016/0550-3213(88)90179-4 ADSMathSciNetGoogle Scholar
  39. Pon46.
    Pontryagin, L.S.: Topological Groups. Translated from the Russian by Emma Lehmer. Princeton University Press (1946). https://books.google.it/books?id=eS0PAAAAIAAJ&hl=it&source=gbs_book_other_versions
  40. Reh00.
    Rehren K.-H.: Chiral observables and modular invariants. Commun. Math. Phys. 208(3), 689–712 (2000) arXiv:hep-th/9903262 ADSMathSciNetzbMATHGoogle Scholar
  41. SW71.
    Sadowski P., Woronowicz S.L.: Total sets in quantum field theory. Rep. Math. Phys. 2(2), 113–120 (1971).  https://doi.org/10.1016/0034-4877(71)90024-3 ADSMathSciNetzbMATHGoogle Scholar
  42. Tak03.
    Takesaki, M.: Theory of Operator Algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003). Operator Algebras and Non-commutative Geometry, 6. https://books.google.com/books?id=-4GyR1VlQz4C
  43. Tan12.
    Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012) arXiv:1107.2629 ADSMathSciNetzbMATHGoogle Scholar
  44. Tan14.
    Tanimoto, Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. Forum Math. Sigma 2:e7, 31 (2014). arXiv:1301.6090
  45. Wei05.
    Weiner, M.: Conformal covariance and related properties of chiral QFT. 2005. Ph.D. thesis, Università di Roma “Tor Vergata”. arXiv:math/0703336
  46. Wie93.
    Wiesbrock, H.-W.: Half-sided modular inclusions of von-Neumann-algebras. Commun. Math. Phys. 157(1), 83–92 (1993). https://projecteuclid.org/euclid.cmp/1104253848
  47. Wie98.
    Wiesbrock, H.-W.: Modular intersections of von Neumann algebras in quantum field theory. Commun. Math. Phys. 193(2), 269–285 (1998). https://www-sfb288.math.tu-berlin.de/pub/Preprints/preprint193.ps.gz
  48. Zom86.
    Zomolodchikov, A.B.: “Irreversibility” of the flux of the renormalization group in a 2D field theory. Pis’ma Zh. Èksper. Teoret. Fiz. 43(12), 565–567 (1986). http://www.jetpletters.ac.ru/ps/1413/article_21504.shtml

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly

Personalised recommendations