Advertisement

Sandpiles on the Square Lattice

  • Robert D. Hough
  • Daniel C. JerisonEmail author
  • Lionel Levine
Article
  • 15 Downloads

Abstract

We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice \({\mathbb{Z}^2}\) . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus \({\left(\mathbb{Z}/m\mathbb{Z}\right)^2}\) . The techniques use analysis of the space of functions on \({\mathbb{Z}^2}\) which are harmonic modulo 1. In the course of our arguments, we characterize the harmonic modulo 1 functions in \({\ell^p(\mathbb{Z}^2)}\) as linear combinations of certain discrete derivatives of Green’s functions, extending a result of Schmidt and Verbitskiy (Commun Math Phys 292(3):721–759, 2009. arXiv:0901.3124 [math.DS]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization, 4h edn. Wiley, Hoboken, NJ (2016)Google Scholar
  2. 2.
    Athreya S.R., Járai A.A.: Infinite volume limit for the stationary distribution of abelian sandpile models. Commun. Math. Phys. 249(1), 197–213 (2004).  https://doi.org/10.1007/s00220-004-1080-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).  https://doi.org/10.1103/PhysRevLett.59.381 ADSCrossRefGoogle Scholar
  4. 4.
    Bak P., Tang C., Wiesenfeld K.: Self-organized criticality.. Phys. Rev. A (3) 38(1), 364–374 (1988).  https://doi.org/10.1103/PhysRevA.38.364 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baker M., Shokrieh F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Combin. Theory Ser. A 120(1), 164–182 (2013) arXiv:1107.1313 [math.CO]MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bhupatiraju, S., Hanson, J., Járai, A.A.: Inequalities for critical exponents in d-dimensional sandpiles. Electron. J. Probab. 22 (2017) ArXiv e-prints, arXiv:1602.06475 [math.PR]
  7. 7.
    Bond B., Levine L.: Abelian networks I. Foundations and examples. SIAM J. Discrete Math. 30(2), 856–874 (2016) arXiv:1309.3445 [cs.FL]MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cairns, H.: Some halting problems for abelian sandpiles are undecidable in dimension three. ArXiv e-prints (2015). arXiv:1508.00161 [math.CO]
  9. 9.
    Chung F., Ellis R.B.: A chip-firing game and Dirichlet eigenvalues. Discrete Math. 257(2-3), 341–355 (2002).  https://doi.org/10.1016/S0012-365X(02)00434-X. Kleitman and combinatorics: a celebration (Cambridge, MA, 1999)
  10. 10.
    Dhar D., Ruelle P., Sen S., Verma D.-N.: Algebraic aspects of abelian sandpile models. J. Phys. A 28(4), 805–831 (1995) arXiv:cond-mat/9408020 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett 64(14), 1613–1616 (1990).  https://doi.org/10.1103/PhysRevLett.64.1613 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dhar D.: The abelian sandpile and related models. Physica A: Statistical Mechanics and its Applications 263(1), 4–25 (1999) arXiv:cond-mat/9808047 ADSCrossRefGoogle Scholar
  13. 13.
    Diaconis, P.: Group representations in probability and statistics, volume 11 of Institute of Mathematical Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, CA (1988)Google Scholar
  14. 14.
    Diaconis P., Graham R.L., Morrison J.A.: Asymptotic analysis of a random walk on a hypercube with many dimensions. Random Structures Algorithms 1(1), 51–72 (1990).  https://doi.org/10.1002/rsa.3240010105 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diaconis P., Shahshahani M.: Time to reach stationarity in the Bernoulli-Laplace diffusion model. SIAM J. Math. Anal. 18(1), 208–218 (1987).  https://doi.org/10.1137/0518016 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fey A., Levine L., Peres Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138(1-3), 143–159 (2010) arXiv:0901.3805 [math.CO]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fey A., Levine L., Wilson D.B.: Driving sandpiles to criticality and beyond. Phys. Rev. Lett. 104, 145703 (2010) arXiv:0912.3206 [cond-mat.stat-mech]ADSCrossRefGoogle Scholar
  18. 18.
    Fey A., Meester R., Redig F.: Stabilizability and percolation in the infinite volume sandpile model. Ann. Probab. 37(2), 654–675 (2009) arXiv:0710.0939 [math.PR]MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fey-den Boer A., Redig F.: Organized versus self-organized criticality in the abelian sandpile model. Markov Process. Related Fields 11(3), 425–442 (2005) arXiv:math-ph/0510060 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fukai Y., Uchiyama K.: Potential kernel for two-dimensional random walk. Ann. Probab. 24(4), 1979–1992 (1996).  https://doi.org/10.1214/aop/1041903213 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In: In and out of equilibrium. 2, volume 60 of Progr. Probab. Birkhäuser, Basel, pp. 331–364 (2008). arXiv:0801.3306 [math.CO]
  22. 22.
    Hough, B.: Mixing and cut-off in cycle walks. Electron. J. Probab. 22 (2017) ArXiv e-prints, arXiv:1512.00571 [math.NT]
  23. 23.
    Iwaniec, H., Kowalski, E.: Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, (2004).  https://doi.org/10.1090/coll/053
  24. 24.
    Járai A.A., Redig F.: Infinite volume limit of the abelian sandpile model in dimensions d ≥ 3. Probab. Theory Related Fields 141(1-2), 181–212 (2008) arXiv:math/0408060 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Járai Antal A., Redig F., Saada E.: Approaching criticality via the zero dissipation limit in the abelian avalanche model. J. Stat. Phys. 159(6), 1369–1407 (2015) arXiv:0906.3128 [math.PR]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jerison, D.C., Levine, L., Pike, J.: Mixing time and eigenvalues of the abelian sandpile Markov chain. ArXiv e-prints, (November 2015). arXiv:1511.00666 [math.PR]
  27. 27.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python, (2001). [Online; Accessed 13 Feb 2017]Google Scholar
  28. 28.
    Kozma G., Schreiber E.: An asymptotic expansion for the discrete harmonic potential. Electron. J. Probab. 9(1), 1–17 (2004) arXiv:math/0212156 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Levine L.: Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle. Commun. Math. Phys. 335(2), 1003–1017 (2015) arXiv:1402.3283 [math.PR]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Levine L., Murugan M., Peres Y., Ugurcan Baris E.: The divisible sandpile at critical density. Ann. Henri Poincaré 17(7), 1677–1711 (2016) arXiv:1501.07258 [math.PR]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Maes C., Redig F., Saada E.: The infinite volume limit of dissipative abelian sandpiles. Commun. Math. Phys. 244(2), 395–417 (2004).  https://doi.org/10.1007/s00220-003-1000-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Meester R., Quant C.: Connections between ‘self-organised’ and ‘classical’ criticality. Markov Process. Related Fields 11(2), 355–370 (2005)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Montgomery, H.L.: Ten lectures on the interface between analytic number theory and harmonic analysis, volume 84 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, (1994).  https://doi.org/10.1090/cbms/084
  34. 34.
    Pegden W., Smart Charles K.: Convergence of the Abelian sandpile. Duke Math. J. 162(4), 627–642 (2013) arXiv:1105.0111 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schmidt K., Verbitskiy E.: Abelian sandpiles and the harmonic model. Commun. Math. Phys. 292(3), 721–759 (2009) arXiv:0901.3124 [math.DS]ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Sokolov A., Melatos A., Kieu T., Webster R.: Memory on multiple time-scales in an abelian sandpile. Physica A Stat. Mech. Appl. 428, 295–301 (2015).  https://doi.org/10.1016/j.physa.2015.02.001 ADSCrossRefGoogle Scholar
  37. 37.
    Michael Steele, J.: An introduction to the art of mathematical inequalities. In: The Cauchy-Schwarz Master Class. MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge (2004).  https://doi.org/10.1016/10.1017/CBO9780511817106.
  38. 38.
    Titchmarsh, E.C.: The Theory of the Riemann Zeta-Function. The Clarendon Press, Oxford University Press, New York, 2nd edn, (1986). Edited and with a preface by D. R. Heath-BrownGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Robert D. Hough
    • 1
  • Daniel C. Jerison
    • 2
    • 3
    Email author
  • Lionel Levine
    • 2
  1. 1.Department of MathematicsStony Brook UniversityStony BrookUSA
  2. 2.Department of MathematicsCornell UniversityIthacaUSA
  3. 3.Department of MathematicsTel Aviv UniversityTel AvivIsrael

Personalised recommendations