Advertisement

Communications in Mathematical Physics

, Volume 366, Issue 3, pp 895–926 | Cite as

Locality at the Boundary Implies Gap in the Bulk for 2D PEPS

  • Michael J. Kastoryano
  • Angelo LuciaEmail author
  • David Perez-Garcia
Article
  • 65 Downloads

Abstract

Proving that the parent Hamiltonian of a Projected Entangled Pair State (PEPS) is gapped remains an important open problem. We take a step forward in solving this problem by showing two results: first, we identify an approximate factorization condition on the boundary state of rectangular subregions that is sufficient to prove that the parent Hamiltonian of the bulk 2D PEPS has a constant gap in the thermodynamic limit; second, we then show that Gibbs state of a local, finite-range Hamiltonian satisfy such condition. The proof applies to the case of injective and MPO-injective PEPS, employs the martingale method of nearly commuting projectors, and exploits a result of Araki (Commun Math Phys 14(2):120–157, 1969) on the robustness of one dimensional Gibbs states. Our result provides one of the first rigorous connections between boundary theories and dynamical properties in an interacting many body system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Albert Werner and Wojciech De Roeck for fruitful discussions. M. J. K. was supported by the VILLUM FONDEN Young Investigator Program. A. L. acknowledges financial support from the European Research Council (ERC Grant Agreement No. 337603), the Danish Council for Independent Research (Sapere Aude), VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059), the Walter Burke Institute for Theoretical Physics in the form of the Sherman Fairchild Fellowship as well as support from the Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center (NFS Grant PHY-1733907). D. P. G. acknowledges support from MINECO (Grant MTM2014-54240-P), Comunidad de Madrid (Grant QUITEMAD+-CM, ref. S2013/ICE-2801), and Severo Ochoa project SEV-2015-556. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 648913).

References

  1. 1.
    Affleck I., Kennedy T., Lieb E.H., Tasaki H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115, 477–528 (1988)ADSMathSciNetGoogle Scholar
  2. 2.
    Aharonov D., Arad I., Vazirani U., Landau Z.: The detectability lemma and its applications to quantum Hamiltonian complexity. New J. Phys. 13(11), 113043 (2011)ADSGoogle Scholar
  3. 3.
    Anderson P.W.: Resonating valence bonds: a new kind of insulator?. Mater. Res. Bull. 8(2), 153–160 (1973)Google Scholar
  4. 4.
    Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems (2013), pre-print. arXiv:1301.1162 [quant-ph]
  5. 5.
    Arad I., Landau Z., Vazirani U., Vidick T.: Rigorous RG algorithms and area laws for low energy eigenstates in 1D. Commun. Math. Phys. 356(1), 65–105 (2017)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Araki H.: Gibbs states of a one dimensional quantum lattice. Commun. Math. Phys. 14(2), 120–157 (1969)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Araki H.: Expansional in banach algebras. Ann. Sci. Éc. Norm. Supér. 6(1), 67–84 (1973)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bertini, L., Cancrini, N., Cesi, F.: The spectral gap for a Glauber-type dynamics in a continuous gas. Annales de l’IHP Probabilités et statistiques 38, 91–108 (2002)Google Scholar
  9. 9.
    Bhatia R.: Matrix Analysis. Springer, New York (1997)zbMATHGoogle Scholar
  10. 10.
    Bouch G.: Complex-time singularity and locality estimates for quantum lattice systems. J. Math. Phys. 56(12), 123303 (2015)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Brandão F.G.S.L., Horodecki M.: Exponential decay of correlations implies area law. Commun. Math. Phys. 333(2), 761–798 (2015)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin Heidelberg (1987)zbMATHGoogle Scholar
  13. 13.
    Buerschaper O.: Twisted injectivity in projected entangled pair states and the classification of quantum phases. Ann. Phys. 351, 447–476 (2014)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Bultinck N., Mariën M., Williamson D.J., Şahinoğlu M.B., Haegeman J., Verstraete F.: Anyons and matrix product operator algebras. Ann. Phys. 378, 183–233 (2017)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011)ADSGoogle Scholar
  16. 16.
    Cirac, J.I., Michalakis, S., Pérez-García, D., Schuch, N.: Robustness in projected entangled pair states. Phys. Rev. B 88(11), 115108 (2013)ADSGoogle Scholar
  17. 17.
    Cirac J.I., Perez-Garcia D., Schuch N., Verstraete F.: Matrix product density operators: renormalization fixed points and boundary theories. Ann. Phys. 378, 100–149 (2017)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Cirac J.I., Poilblanc D., Schuch N., Verstraete F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83(24), 245134 (2011)ADSGoogle Scholar
  19. 19.
    Cubitt T.S., Perez-Garcia D., Wolf M.M.: Undecidability of the spectral gap. Nature 528(7581), 207–211 (2015)ADSGoogle Scholar
  20. 20.
    Dobrushin, R.L.: Description of a random field by means of conditional probabilities, with applications. Teor. Veroyatnost. i Primenen 13 (1968)Google Scholar
  21. 21.
    Dubail, J., Read, N.: Tensor network trial states for chiral topological phases in two dimensions and a no-go theorem in any dimension. Phys. Rev. B 92(20), 205307 (2015)Google Scholar
  22. 22.
    Fannes M., Nachtergaele B., Werner R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144(3), 443–490 (1992)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Fannes M., Werner R.F.: Boundary conditions for quantum lattice systems. Helv. Phys. Acta 68, 635–657 (1995)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Fawzi O., Renner R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Fidkowski L.: Entanglement spectrum of topological insulators and superconductors. Phys. Rev. Lett. 104(13), 130502 (2010)ADSGoogle Scholar
  26. 26.
    Fidkowski L., Kitaev A.: Topological phases of fermions in one dimension. Phys. Rev. B 83(7), 075103 (2011)ADSGoogle Scholar
  27. 27.
    Fujiwara I.: Operator calculus of quantized operator. Prog. Theor. Phys. 7(5), 433–448 (1952)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Gauthé, O., Poilblanc, D.: Entanglement properties of the two-dimensional SU(3) Affleck–Kennedy–Lieb–Tasaki state. Phys. Rev. B 96(12), 121115(R) (2017)Google Scholar
  29. 29.
    Hastings M.B.: Solving gapped Hamiltonians locally. Phys. Rev. B 73(8), 085115 (2006)ADSGoogle Scholar
  30. 30.
    Hastings M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 2007(08), P08024 (2007)MathSciNetGoogle Scholar
  31. 31.
    Hayden P., Nezami S., Qi X.-L., Thomas N., Walter M., Yang Z.: Holographic duality from random tensor networks. J. High Energy Phys. 2016(11), 9 (2016)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kastoryano, M.J., Brandao, F.G.S.L.: Quantum Gibbs Samplers: the commuting case. Commun. Math. Phys. 344(3), 915–957 (2014)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Kastoryano, M.J., Lucia, A.: Divide and conquer method for proving gaps of frustration free Hamiltonians. J. Stat. Mech. Theory Exp. 3, 033105 (2018)Google Scholar
  34. 34.
    Kato, K., Brandao, F.G.S.L.: Quantum approximate Markov chains are thermal (2016), pre-print. arXiv:1609.06636 [quant-ph]
  35. 35.
    Kim I.H., Kastoryano M.J.: Entanglement renormalization, quantum error correction, and bulk causality. J. High Energy Phys. 2017(4), 40 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Knabe S.: Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets. J. Stat. Phys. 52(3-4), 627–638 (1988)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Lanford O.E., Ruelle D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13(3), 194–215 (1969)ADSMathSciNetGoogle Scholar
  38. 38.
    Levin M.A., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71(4), 045110 (2005)ADSGoogle Scholar
  39. 39.
    Li H., Haldane F.D.M.: Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum hall effect states. Phys. Rev. Lett. 101(1), 010504 (2008)ADSGoogle Scholar
  40. 40.
    Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)ADSMathSciNetGoogle Scholar
  41. 41.
    Lou J., Tanaka S., Katsura H., Kawashima N.: Entanglement spectra of the two-dimensional Affleck–Kennedy–Lieb–Tasaki model: correspondence between the valence-bond-solid state and conformal field theory. Phys. Rev. B 84(24), 245128 (2011)ADSGoogle Scholar
  42. 42.
    Martinelli, F.: Lectures on Glauber Dynamics for Discrete Spin Models. Lectures on Probability Theory and Statistics, pp. 93–191 (2004)Google Scholar
  43. 43.
    Molnar A., Schuch N., Verstraete F., Cirac J.I.: Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states. Phys. Rev. B 91(4), 045138 (2015)ADSGoogle Scholar
  44. 44.
    Nachtergaele B.: The spectral gap for some spin chains with discrete symmetry breaking. Commun. Math. Phys. 175(3), 565–606 (1996)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Norman, M.R.: Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev Modern Phys 88(4), 041002 (2016)ADSMathSciNetGoogle Scholar
  46. 46.
    Orús R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Pastawski F., Yoshida B., Harlow D., Preskill J.: Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J. High Energy Phys. 2015(6), 1–55 (2015)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Perez-Garcia D., Sanz M., Gonzalez-Guillen C.E., Wolf M.M., Cirac J.I.: Characterizing symmetries in a projected entangled pair state. New J. Phys. 12(2), 025010 (2010)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Pérez García D., Verstraete F., Wolf M.M., Cirac J.I.: Matrix product state representations. Quantum Inf. Comput. 7(5), 401–430 (2007)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Poilblanc D.: Entanglement spectra of quantum Heisenberg ladders. Phys. Rev. Lett. 105(7), 077202 (2010)ADSGoogle Scholar
  51. 51.
    Poilblanc D.: Entanglement Hamiltonian of the quantum Néel state. J. Stat. Mech. Theory Exp. 2014(10), P10026 (2014)MathSciNetGoogle Scholar
  52. 52.
    Poilblanc, D., Cirac, J.I., Schuch, N.: Chiral topological spin liquids with projected entangled pair states. Phys. Rev. B 91(22), 224431 (2015)ADSGoogle Scholar
  53. 53.
    Poilblanc D., Schuch N., Pérez-García D., Cirac J.I.: Topological and entanglement properties of resonating valence bond wave functions. Phys. Rev. B 86(1), 014404 (2012)ADSGoogle Scholar
  54. 54.
    Pollmann F., Turner A.M., Berg E., Oshikawa M.: Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81(6), 064439 (2010)ADSGoogle Scholar
  55. 55.
    Rispler M., Duivenvoorden K., Schuch N.: Long-range order and symmetry breaking in projected entangled-pair state models. Phys. Rev. B 92(15), 155133 (2015)ADSzbMATHGoogle Scholar
  56. 56.
    Roberts, B., Vidick, T., Motrunich, O.I.: Implementation of rigorous renormalization group method for ground space and low-energy states of local hamiltonians. Phys. Rev. B 96(21), 214203 (2017)ADSGoogle Scholar
  57. 57.
    Şahinoğlu, M.B., Williamson, D., Bultinck, N., Mariën, M., Haegeman, J., Schuch, N., Verstraete, F.: Characterizing topological order with matrix product operators (2014), pre-print. arXiv:1409.2150 [quant-ph]
  58. 58.
    Savary L., Balents L.: Quantum spin liquids: a review. Rep. Progress Phys. 80(1), 016502 (2016)ADSGoogle Scholar
  59. 59.
    Schuch N., Cirac I., Pérez-García D.: PEPS as ground states: degeneracy and topology. Ann. Phys. 325(10), 2153–2192 (2010)ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Schuch N., Pérez-García D., Cirac I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011)ADSGoogle Scholar
  61. 61.
    Schuch N., Poilblanc D., Cirac J.I., Pérez-García D.: Resonating valence bond states in the PEPS formalism. Phys. Rev. B 86(11), 115108 (2012)ADSGoogle Scholar
  62. 62.
    Schuch N., Poilblanc D., Cirac J.I., Perez-Garcia D.: Topological order in the projected entangled-pair states formalism: transfer operator and boundary Hamiltonians. Phys. Rev. Lett. 111(9), 090501 (2013)ADSGoogle Scholar
  63. 63.
    Schwarz, M., Buerschaper, O., Eisert, J.: Approximating local observables on projected entangled pair states. Phys. Rev. A 95(6), 060102(R) (2017)Google Scholar
  64. 64.
    Swingle, B.: Entanglement renormalization and holography. Phys. Rev. D 86(6), 065007 (2012)ADSMathSciNetGoogle Scholar
  65. 65.
    Verstraete F., Murg V., Cirac J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008)ADSGoogle Scholar
  66. 66.
    Verstraete F., Wolf M.M., Perez-Garcia D., Cirac J.I.: Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96(22), 220601 (2006)ADSMathSciNetzbMATHGoogle Scholar
  67. 67.
    Wahl, T.B., Tu, H.-H., Schuch, N., Cirac J.I.: Projected entangled-pair states can describe chiral topological states. Phys. Rev. Lett. 111(23), 236805 (2013)ADSGoogle Scholar
  68. 68.
    Wolf, M.M.: Quantum channels & operations. Guided tour. http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf (2012). Accessed 31 July 2017
  69. 69.
    Yang, S., Wahl, T.B., Tu, H.-H., Schuch, N., Cirac, J.I.: Chiral projected entangled-pair state with topological order. Phys. Rev. Lett. 114(10), 106803 (2015)ADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NBIA, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institute for Theoretical PhysicsUniversity of CologneCologneGermany
  3. 3.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Walter Burke Institute for Theoretical Physics and Institute for Quantum Information & MatterCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain
  6. 6.ICMAT, C/ Nicolás CabreraMadridSpain

Personalised recommendations