Advertisement

Communications in Mathematical Physics

, Volume 371, Issue 3, pp 1231–1260 | Cite as

Quantum Differentiability on Quantum Tori

  • Edward McdonaldEmail author
  • Fedor Sukochev
  • Xiao Xiong
Article

Abstract

We provide a full characterisation of quantum differentiability (in the sense of Connes) on quantum tori. We also prove a quantum integration formula which differs substantially from the commutative case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank the anonymous referees for careful reading and useful sugges tions; in particular one referee pointed out how our main results could be proved without an L∞ condition.We are also greatly indebted to Professor Raphaël Ponge for many helpful comments on the section of Pseudodif ferential Operators. The authors are supported by Australian Research Council (Grant No. FL170100052); X. Xiong is also partially supported by the National Natural Science Foundation of China (Grant No. 11301401).

References

  1. 1.
    Baaj S.: Calcul pseudodifférentiel et produits croisés de C *-algèbres, I and II. C. R. Acad. Sc. Paris, Sér. I 307, 581–586 and 663-666 (1988)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bellissard, J.: K-theory of C *-algebras in solid state physics. In: Statistical Mechanics and Field Theory: Mathematical Aspects Groningen, volume 257 of Lecture Notes in Physics, pp. 99–156 (1985). Springer, Berlin (1986)Google Scholar
  3. 3.
    Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Birman M.S., Solomyak M.Z.: Operator integration, perturbations and commutators. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170, 34–66, 321 (1989)zbMATHGoogle Scholar
  5. 5.
    Chen Z., Xu Q., Yin Z.: Harmonic analysis on quantum tori. Commun. Math. Phys. 322, 755–805 (2013)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Connes A.: C *-algèbres et géométrie différentielle. C. R. Acad. Sc. Paris, sér. A 290, 599–604 (1980)zbMATHGoogle Scholar
  7. 7.
    Connes A.: Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 257–360 (1985)MathSciNetGoogle Scholar
  8. 8.
    Connes A.: The action functional in noncommutative geometry. Comm. Math. Phys. 117, 673–683 (1988)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)zbMATHGoogle Scholar
  10. 10.
    Connes A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Connes, A., Douglas, M.R., Schwarz, A.: Noncommutative geometry and matrix theory: compactification on tori. J. High Energy Phys. 2(3), 35 (1998)Google Scholar
  12. 12.
    Connes, A., McDonald, E., Sukochev, F., Zanin, D.: Conformal trace theorem for Julia sets of quadratic polynomials. Ergodic Theory Dyn. Syst. 1–26 (2017).  https://doi.org/10.1017/etds.2017.124 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Connes A., Moscovici H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27, 639–684 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Connes A., Sukochev F., Zanin D.: Trace theorem for quasi-Fuchsian groups. Mat. Sb. 208, 59–90 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Connes A., Sullivan D., Teleman N.: Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes. Topology 33, 663–681 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Connes, A., Tretkoff, P.: The Gauss–Bonnet Theorem for the Noncommutative Two Torus. Noncommutative Geometry, Arithmetic, and Related Topics, pp. 141–158. Johns Hopkins University Press, Baltimore (2011)Google Scholar
  17. 17.
    Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Dodds P.G., Dodds T.K., de Pagter B.: Fully symmetric operator spaces. Integral Equ. Oper. Theory 15, 942–972 (1992)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dodds P.G., Dodds T.K., de Pagter B., Sukochev F.: Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal. 148, 28–69 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Effros E.G., Hahn F.: Locally compact transformation groups and C *- algebras. Bull. Am. Math. Soc. 73, 222–226 (1967)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Gheorghe L.: Hankel operators in Schatten ideals. Ann. Mat. Pura Appl. (4) 180(2), 203–210 (2001)MathSciNetzbMATHGoogle Scholar
  22. 22.
    González-Pérez, A.M., Junge, M., Parcet, J.: Singular integral in quantum Euclidean spaces. arXiv:1705.01081
  23. 23.
    Gracia-Bondía, J.M., Várilly, J., Figueroa, H.: Elements of Noncommutative Geometry. Birkhüser Advanced Texts: Basler Lehrbächer. Birkhüuser Boston, Inc., Boston (2001)zbMATHGoogle Scholar
  24. 24.
    Grafakos L.: Classical Fourier Analysis, Second Edition. Springer-Verlag, New York (2008)zbMATHGoogle Scholar
  25. 25.
    Ha, H., Lee, G., Ponge, R.: Pseudodifferential calculus on noncommutative tori, I. arXiv:1803.03575
  26. 26.
    Ha, H., Lee, G., Ponge, R.: Pseudodifferential calculus on noncommutative tori, II. arXiv:1803.03580.
  27. 27.
    Hörmander L.: . Pseudo-differential operators. 18(3), 501–517 (1965)Google Scholar
  28. 28.
    Janson S., Wolff T.H.: Schatten classes and commutators of singular integral operators. Ark. Mat. 20, 301–310 (1982)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kalton, N., Nigel, Lord, S., Potapov, D., Sukochev, F.: Traces of compact operators and the noncommutative residue. Adv. Math. 235, 1–55 (2013)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kohn J.J., Nirenberg L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lein M., Măntoiu M., Richard S.: Magnetic pseudodifferential operators with coefficients in C *-algebras. Publ. Res. Inst. Math. Sci. 46, 755–788 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Levitina, G., Sukochev, F., Zanin, D.: Cwikel estimates revisited. arXiv:1703.04254
  33. 33.
    Lévy C., Jiménez C.N., Paycha S.: The canonical trace and the noncommutative residue on the noncommutative torus. Trans. Am. Math. Soc. 368(2), 1051–1095 (2016)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Lord S., McDonald E., Sukochev F., Zanin D.: Quantum differentiability of essentially bounded functions on Euclidean space. J. Funct. Anal. 273, 2353–2387 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lord S., Potapov D., Sukochev F.: Measures from Dixmier traces and zeta functions. J. Funct. Anal. 259, 1915–1949 (2010)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications, vol. 46. Walter de Gruyter, Berlin (2012)Google Scholar
  37. 37.
    Lord, S., Sukochev, F., Zanin, D.: Advances in Dixmier traces and applications. (submitted manuscript).Google Scholar
  38. 38.
    Măntoiu M., Purice R., Richard S.: Twisted crossed products and magnetic pseudodifferential operators, in advances in operator algebras and mathematical physics. Theta Ser. Adv. Math. 5, 137–172 (2005)zbMATHGoogle Scholar
  39. 39.
    McDonald, E., Sukochev, F., Zanin, D.: An algebraic approach to the principal symbol mapping for noncommutative C *-algebras. PreprintGoogle Scholar
  40. 40.
    de Pagter B., Sukochev F., Witvliet H.: Double operator integrals. J. Funct. Anal. 192, 52–111 (2002)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Peller V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, Berlin (2003)Google Scholar
  42. 42.
    Pimsner M., Voiculescu D.: Exact sequences for K-groups and Ext-groups of certain cross-product C *-algebras. J. Oper. Theory 4(1), 93–118 (1980)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Pisier, G., Xu, Q.: Noncommutative L p-spaces. In: Johnson, W.B., Lindenstrauss, J. (eds.) Handbook of the Geometry of Banach Spaces, Vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)Google Scholar
  44. 44.
    Potapov D., Sukochev F.: Lipschitz and commutator estimates in symmetric operator spaces. J. Oper. Theory. 59(1), 211–234 (2008)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Potapov D., Sukochev F.: Unbounded Fredholm modules and double operator integrals. J. Reine Angew. Math. 626, 159–185 (2009)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Potapov D., Sukochev F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207, 375–389 (2011)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rieffel M.A.: C *-algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Rieffel M.A.: Deformation quantization for actions of R d. Mem. Am. Math. Soc. 106(506), x+93 (1993)zbMATHGoogle Scholar
  49. 49.
    Ricard É., Xu Q.: Complex interpolation of weighted noncommutative L p-spaces. Houst. J. Math. 37, 1165–1179 (2011)zbMATHGoogle Scholar
  50. 50.
    Rochberg R., Semmes S.: Nearly weakly orthonormal sequences, singular value estimates, and Calderón–Zygmund operators. J. Funct. Anal. 86, 237–306 (1989)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Seiberg, N., Witten, E.: String theory and noncommutative geometry. J. High Energy Phys. 9(32), 93 (1999)Google Scholar
  52. 52.
    Semenov E., Sukochev F., Usachev A., Zanin D.: Banach limits and traces on \({\mathcal{L}_{1,\infty}}\). Adv. Math. 285, 568–628 (2015)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Simon, B.: Trace Ideals and Their Applications. London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, New York (1979)Google Scholar
  54. 54.
    Spera M.: Sobolev theory for noncommutative tori. Rend. Sem. Mat. Univ. Padova. 86, 143–156 (1992)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)Google Scholar
  56. 56.
    Tao J.: The theory of pseudo-differential operators on the noncommutative n-torus. 2018 J. Phys. Conf. Ser. 965, 1–12 (2018)Google Scholar
  57. 57.
    Xia J.: Geometric invariants of the quantum Hall effect. Commun. Math. Phys. 119(1), 29–50 (1988)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    Xia, R., Xiong, X.: Mapping properties of operator-valued pseudo-differential operators. arXiv:1804.03435
  59. 59.
    Xiong X., Xu Q., Yin Z.: Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. Mem. Am. Math. Soc. 252(1203), vi+118 (2018)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Xu, Q.: Noncommutative L p-spaces and martingale inequalities. (Unpublished manuscript) (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUNSWKensingtonAustralia
  2. 2.Institute for Advanced Study in MathematicsHarbin Institute of TechnologyHarbinChina

Personalised recommendations