Advertisement

Communications in Mathematical Physics

, Volume 372, Issue 1, pp 119–150 | Cite as

A Unique Connection for Born Geometry

  • Laurent Freidel
  • Felix J. RudolphEmail author
  • David Svoboda
Article

Abstract

It has been known for a while that the effective geometrical description of compactified strings on d-dimensional target spaces implies a generalization of geometry with a doubling of the sets of tangent space directions. This generalized geometry involves an O(d,d) pairing \({\eta}\) and an O(2d) generalized metric \({\mathcal{H}}\). More recently it has been shown that in order to include T-duality as an effective symmetry, the generalized geometry also needs to carry a phase space structure or more generally a para-Hermitian structure encoded into a skew-symmetric pairing \({\omega}\). The consistency of string dynamics requires this geometry to satisfy a set of compatibility relations that form what we call a Born geometry. In this work we prove an analogue of the fundamental theorem of Riemannian geometry for Born geometry. We show that there exists a unique connection which preserves the Born structure \({(\eta,\omega,\mathcal{H})}\) and which is torsionless in a generalized sense. This resolves a fundamental ambiguity that is present in the double field theory formulation of effective string dynamics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

F.J.R. would like to thank Chris Blair and Thomas Strobl for useful discussions. L.F. would like to thank long-time collaborator D. Minic for inputs and encouragements. D.S. would like to thank his co-supervisors Ruxandra Moraru and Shengda Hu for their supervision. The work of F.J.R. is supported by DFG Grant TRR33 “The Dark Universe”. D.S. is currently a Ph.D. student at Perimeter institute and University of Waterloo. His research is supported by NSERC Discovery Grants 378721. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

References

  1. 1.
    Dorfman I.: Dirac structures of integrable evolution equations. Phys. Lett. A 125, 240–246 (1987)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Courant, T., Weinstein, A.: Beyond poisson structures, seminare sud-rhodanien de. Seminare sud-rhodanien de geometrie VIII. Travaux en Cours 27, Hermann, Paris (1988)Google Scholar
  3. 3.
    Courant T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Loday J.: Une version non commutative des algèbres de lie: les algèbres de leibniz. Enseign. Math. 39, 269–293 (1993)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Liu Z.-J., Weinstein A., Xu P.: Manin triples for lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. Ph.D. thesis, University of California, Berkeley (1999)Google Scholar
  7. 7.
    Severa P., Weinstein A.: Poisson geometry with a 3 form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2001) arXiv:math/0107133 CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Hitchin N.: Generalized Calabi–Yau manifolds. Quart. J. Math. 54, 281–308 (2003) arXiv:math/0209099 CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford (2003). arXiv:math/0401221
  10. 10.
    Vaisman I.: Transitive courant algebroids. Int. J. Math. Math. Sci. 2005, 1737–1758 (2005) arXiv:math/0407399 CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Hitchin, N.: Brackets, forms and invariant functionals (2005). arXiv:math/0508618
  12. 12.
    Gualtieri, M.: Branes on poisson varieties (2007). arXiv:0710.2719
  13. 13.
    Chen Z., Stienon M., Xu P.: On regular courant algebroids. J. Symplectic Geom. 11, 1–24 (2013) arXiv:0909.0319 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Ševera, P.: Letters to Alan Weinstein about courant algebroids (2017). arXiv:1707.00265
  15. 15.
    Jurco, B., Vysoky, J.: Courant algebroid connections and string effective actions. In: Proceedings, workshop on Strings, Membranes and Topological Field Theory. pp. 211–265 (2017). arXiv:1612.01540
  16. 16.
    Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L.: The principle of relative locality. Phys. Rev. D84, 084010 (2011) arXiv:1101.0931 ADSzbMATHGoogle Scholar
  17. 17.
    Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L.: Relative locality: a deepening of the relativity principle. Gen. Rel. Grav. 43, 2547–2553 (2011) arXiv:1106.0313 CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Amelino-Camelia G.: Quantum-spacetime phenomenology. Living Rev. Rel. 16, 5 (2013) arXiv:0806.0339 CrossRefGoogle Scholar
  19. 19.
    Freidel L., Leigh R.G., Minic D.: Born reciprocity in string theory and the nature of spacetime. Phys. Lett. B730, 302–306 (2014) arXiv:1307.7080 CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Barcaroli L., Brunkhorst L.K., Gubitosi G., Loret N., Pfeifer C.: Hamilton geometry: phase space geometry from modified dispersion relations. Phys. Rev. D92, 084053 (2015) arXiv:1507.00922 ADSMathSciNetGoogle Scholar
  21. 21.
    Freidel, L., Leigh, R.G., Minic, D.: Quantum spaces are modular (2016). arXiv:1606.01829
  22. 22.
    Guérin, P.A., Brukner, Č.: Observer-dependent locality of quantum events (2018). arXiv:1805.12429
  23. 23.
    Cruceanu V., Fortuny P., Gadea P.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Etayo F., Santamaría R., Trías U.R.: The geometry of a bi-Lagrangian manifold. Diff. Geom. Appl. 24, 33–59 (2006) arXiv:math/0403512 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Vaisman I.: On the geometry of double field theory. J. Math. Phys. 53, 033509 (2012) arXiv:1203.0836 CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Freidel L., Rudolph F.J., Svoboda D.: Generalised kinematics for double field theory. JHEP 11, 175 (2017) arXiv:1706.07089 CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Svoboda, D.: Algebroid structures on para-hermitian manifolds (2018). arXiv:1802.08180
  28. 28.
    Chatzistavrakidis, A., Jonke, L., Khoo, F.S., Szabo, R.J.: Double field theory and membrane sigma-models (2018). arXiv:1802.07003
  29. 29.
    Friedan D.: Nonlinear models in two epsilon dimensions. Phys. Rev. Lett. 45, 1057 (1980)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Siegel W.: Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D47, 5453–5459 (1993) arXiv:hep-th/9302036 ADSMathSciNetGoogle Scholar
  31. 31.
    Siegel W.: Superspace duality in low-energy superstrings. Phys. Rev. D48, 2826–2837 (1993) arXiv:hep-th/9305073 ADSMathSciNetGoogle Scholar
  32. 32.
    Alvarez O.: Target space duality. 1. General theory. Nucl. Phys. B584, 659–681 (2000) arXiv:hep-th/0003177 CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Alvarez O.: Target space duality. 2. Applications. Nucl. Phys. B584, 682–704 (2000) arXiv:hep-th/0003178 CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Hull C.M.: A Geometry for non-geometric string backgrounds. JHEP 10, 065 (2005) arXiv:hep-th/0406102 CrossRefADSMathSciNetGoogle Scholar
  35. 35.
    Ellwood I.T.: NS-NS fluxes in Hitchin’s generalized geometry. JHEP 12, 084 (2007) arXiv:hep-th/0612100 CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Hull C.M.: Doubled geometry and T-folds. JHEP 07, 080 (2007) arXiv:hep-th/0605149 CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Grana M., Minasian R., Petrini M., Waldram D.: T-duality, generalized geometry and non-geometric backgrounds. JHEP 04, 075 (2009) arXiv:0807.4527 CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Hull C., Zwiebach B.: Double field theory. JHEP 09, 099 (2009) arXiv:0904.4664 CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hohm O., Hull C., Zwiebach B.: Generalized metric formulation of double field theory. JHEP 08, 008 (2010) arXiv:1006.4823 CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Coimbra A., Strickland-Constable C., Waldram D.: Supergravity as generalised geometry I: Type II theories. JHEP 11, 091 (2011) arXiv:1107.1733 CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Aldazabal G., Baron W., Marques D., Nunez C.: The effective action of double field theory. JHEP 11, 052 (2011) arXiv:1109.0290 CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Hohm O., Zwiebach B.: On the Riemann tensor in double field theory. JHEP 05, 126 (2012) arXiv:1112.5296 CrossRefADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Hohm O., Zwiebach B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54, 032303 (2013) arXiv:1212.1736 CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    Aldazabal G., Marques D., Nunez C.: Double field theory: a pedagogical review. Class. Quant. Grav. 30, 163001 (2013) arXiv:1305.1907 CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Berman D.S., Blair C.D.A., Malek E., Perry M.J.: The O D,D geometry of string theory. Int. J. Mod. Phys. A29, 1450080 (2014) arXiv:1303.6727 CrossRefADSzbMATHGoogle Scholar
  46. 46.
    Cederwall M.: The geometry behind double geometry. JHEP 09, 070 (2014) arXiv:1402.2513 CrossRefADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Jeon I., Lee K., Park J.-H.: Differential geometry with a projection: application to double field theory. JHEP 04, 014 (2011) arXiv:1011.1324 CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Jeon I., Lee K., Park J.-H.: Stringy differential geometry, beyond Riemann. Phys. Rev. D84, 044022 (2011) arXiv:1105.6294 ADSGoogle Scholar
  49. 49.
    Berman D.S., Godazgar H., Perry M.J., West P.: Duality invariant actions and generalised geometry. JHEP 02, 108 (2012) arXiv:1111.0459 CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    Coimbra A., Strickland-Constable C., Waldram D.: \({E_{d(d)} \times \mathbb{R}^+}\) generalised geometry, connections and M theory. JHEP 02, 054 (2014) arXiv:1112.3989 CrossRefADSzbMATHGoogle Scholar
  51. 51.
    Duff M.J.: Duality rotations in string theory. Nucl. Phys. B335, 610 (1990)CrossRefADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Tseytlin A.A.: Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B242, 163–174 (1990)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    Tseytlin A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl.Phys. B350, 395–440 (1991)CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    Szabo, R.J.: Higher quantum geometry and non-geometric string theory. In: 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017) Corfu, Greece, 2–28 Sept 2017 (2018). arXiv:1803.08861. http://inspirehep.net/record/1663966/files/1803.08861.pdf
  55. 55.
    Berman D.S., Copland N.B., Thompson D.C.: Background field equations for the duality symmetric string. Nucl. Phys. B791, 175–191 (2008) arXiv:0708.2267 CrossRefADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    Sfetsos K., Siampos K., Thompson D.C.: Renormalization of Lorentz non-invariant actions and manifest T-duality. Nucl. Phys. B827, 545–564 (2010) arXiv:0910.1345 CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. 57.
    Freidel L., Leigh R.G., Minic D.: Quantum gravity, dynamical phase space and string theory. Int. J. Mod. Phys. D23, 1442006 (2014) arXiv:1405.3949 CrossRefADSGoogle Scholar
  58. 58.
    Freidel L., Leigh R.G., Minic D.: Metastring theory and modular space-time. JHEP 06, 006 (2015) arXiv:1502.08005 CrossRefADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Freidel L., Leigh R.G., Minic D.: Modular spacetime. Int. J. Mod. Phys. D24, 1544028 (2015)CrossRefADSzbMATHGoogle Scholar
  60. 60.
    Freidel, L., Leigh, R.G., Minic, D.: Intrinsic non-commutativity of closed string theory (2017). arXiv:1706.03305
  61. 61.
    Freidel, L., Leigh, R.G., Minic, D.: On the non-commutativity of closed string zero modes (2017). arXiv:1707.00312
  62. 62.
    Freidel, L., Rudolph, F.J., Svoboda, D.: Generalized fluxes from para-Hermitian geometry (in preparation)Google Scholar
  63. 63.
    Bejan C.-L.: The existence problem of hyperbolic structures on vector bundles. Publ. Inst. Math. Beogr. 53, 133–138 (1993)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Vaisman I.: Towards a double field theory on para-Hermitian manifolds. J. Math. Phys. 54, 123507 (2013) arXiv:1209.0152 CrossRefADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    Hull C., Zwiebach B.: The Gauge algebra of double field theory and Courant brackets. JHEP 09, 090 (2009) arXiv:0908.1792 CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    Ivanov S., Zamkovoy S.: Para hermitian and para quaternionic manifolds. Differ. Geom. Appl. 23, 205–234 (2005) arXiv:math/0310415 CrossRefzbMATHGoogle Scholar
  67. 67.
    Loday J.-L.: Overview on Leibniz algebras and their homology. Fields Inst. Comm. 17, 91–102 (1997)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Streets, J.: Generalized geometry, T-duality, and renormalization group flow (2013). arXiv:math/1310.5121Google Scholar
  69. 69.
    Ivanov S., Tsanov V., Zamkovoy S.: Hyper-parahermitian manifolds with torsion. J. Geom. Phys. 56, 670–690 (2006) arXiv:math/0405585 CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Arnold Sommerfeld Center for Theoretical Physics, Department für PhysikLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations