Rigorous Solution of Strongly Coupled SO(N) Lattice Gauge Theory in the Large N Limit

  • Sourav ChatterjeeEmail author


The main result of this paper is a rigorous computation of Wilson loop expectations in strongly coupled SO(N) lattice gauge theory in the large N limit, in any dimension. The formula appears as an absolutely convergent sum over trajectories in a kind of string theory on the lattice, demonstrating an explicit gauge-string duality. The generality of the proof technique may allow it to be extended other gauge groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



I thank Amir Dembo, Persi Diaconis, Bruce Driver, Len Gross, Alice Guionnet, Jafar Jafarov, Todd Kemp, Herbert Neuberger, Steve Shenker, Lior Silberman, Tom Spencer, and Akshay Venkatesh for many helpful discussions and comments. I am grateful to the referee for a number of useful suggestions, and to H.-T. Yau for his enthusiasm about getting this paper published in CMP.


  1. 1.
    Balaban T.: Regularity and decay of lattice Green’s functions. Commun. Math. Phys. 89(4), 571–597 (1983)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Balaban T.: Ultraviolet stability of three-dimensional lattice pure gauge field theories. Commun. Math. Phys. 102, 255–275 (1985)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Balaban T.: The variational problem and background fields in renormalization group method for lattice gauge theories. Commun. Math. Phys. 102(2), 277–309 (1985)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Balaban T.: Renormalization group approach to lattice gauge field theories. I: generation of effective actions in a small field approximation and a coupling constant renormalization in 4D. Commun. Math. Phys. 109, 249–301 (1987)ADSzbMATHGoogle Scholar
  5. 5.
    Bhanot G., Heller U.M., Neuberger H.: The quenched Eguchi–Kawai model. Phys. Lett. B 113(1), 47–50 (1982)ADSMathSciNetGoogle Scholar
  6. 6.
    Brydges D., Fröhlich J., Seiler E.: On the construction of quantized gauge fields. I. General results. Ann. Phys. 121(1), 227–284 (1979)ADSMathSciNetGoogle Scholar
  7. 7.
    Brydges D.C., Fröhlich J., Seiler E.: Construction of quantised gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys. 71(2), 159–205 (1980)ADSMathSciNetGoogle Scholar
  8. 8.
    Brydges D.C., Fröhlich J., Seiler E.: On the construction of quantized gauge fields. III. The two-dimensional abelian Higgs model without cutoffs. Commun. Math. Phys. 79(3), 353–399 (1981)ADSMathSciNetGoogle Scholar
  9. 9.
    Charalambous N., Gross L.: The Yang–Mills heat semigroup on three-manifolds with boundary. Commun. Math. Phys. 317(3), 727–785 (2013)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chatterjee, S.: Concentration inequalities with exchangeable pairs. Ph.D. thesis, Stanford University (2005)Google Scholar
  11. 11.
    Chatterjee S.: Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1-2), 305–321 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Chatterjee S., Meckes E.: Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 257–283 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Collins B., Guionnet A., Maurel-Segala E.: Asymptotics of unitary and orthogonal matrix integrals. Adv. Math. 222(1), 172–215 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Driver B.K.: YM 2: continuum expectations, lattice convergence, and lassos. Commun. Math. Phys. 123(4), 575–616 (1989)ADSzbMATHGoogle Scholar
  15. 15.
    Dunne, G.V., Ünsal, M.: New Methods in QFT and QCD: From large-N orbifold equivalence to bions and resurgence. Preprint arXiv:1601.03414 (2016)
  16. 16.
    Eguchi T., Kawai H.: Reduction of dynamical degrees of freedom in the large-N gauge theory. Phys. Rev. Lett. 48(16), 1063 (1982)ADSGoogle Scholar
  17. 17.
    Ercolani N.M., McLaughlin K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann–Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 2003(14), 755–820 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ercolani N.M., McLaughlin K.D.T-R., Pierce V.U.: Random matrices, graphical enumeration and the continuum limit of Toda lattices. Commun. Math. Phys. 278(1), 31–81 (2008)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Eynard, B.: Large-N expansion of the 2-matrix model. J. High Energy Phys. 2003(1), 051, (2003)Google Scholar
  20. 20.
    Eynard, B.: Topological expansion for the 1-Hermitian matrix model correlation functions. J. High Energy Phys. 2005(11), 031 (2004)Google Scholar
  21. 21.
    Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42(29), 293001 (2009)Google Scholar
  23. 23.
    Fröhlich J., Spencer T.: Massless phases and symmetry restoration in abelian gauge theories and spin systems. Commun. Math. Phys. 83(3), 411–454 (1982)ADSMathSciNetGoogle Scholar
  24. 24.
    Gonzalez-Arroyo A., Okawa M.: Twisted-Eguchi–Kawai model: a reduced model for large-N lattice gauge theory. Phys. Rev. D 27(10), 2397–2411 (1983)ADSGoogle Scholar
  25. 25.
    Göpfert M., Mack G.: Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant. Commun. Math. Phys. 82(4), 545–606 (1982)ADSMathSciNetGoogle Scholar
  26. 26.
    Greensite J., Lautrup B.: First-order phase transition in four-dimensional SO(3) lattice gauge theory. Phys. Rev. Lett. 47(1), 9–11 (1981)ADSMathSciNetGoogle Scholar
  27. 27.
    Gross D.J., Witten E.: Possible third-order phase transition in the large-N lattice gauge theory. Phys. Rev. D 21(2), 446–453 (1980)ADSGoogle Scholar
  28. 28.
    Gross L.: Convergence of U(1)3 lattice gauge theory to its continuum limit. Commun. Math. Phys. 92(2), 137–162 (1983)ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Gross L., King C., Sengupta A.: Two dimensional Yang–Mills theory via stochastic differential equations. Ann. Phys. 194(1), 65–112 (1989)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Guionnet A.: First order asymptotics of matrix integrals; a rigorous approach towards the understanding of matrix models. Commun. Math. Phys. 244(3), 527–569 (2004)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Guionnet, A.: Random matrices and enumeration of maps. In: International Congress of Mathematicians, vol. III, pp. 623–636. European Mathematical Society, Zürich (2006)Google Scholar
  32. 32.
    Guionnet A., Jones V.F.R., Shlyakhtenko D., Zinn-Justin P.: Loop models, random matrices and planar algebras. Commun. Math. Phys. 316(1), 45–97 (2012)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Guionnet A., Maïda M.: Character expansion method for the first order asymptotics of a matrix integral. Probab. Theory Relat. Fields 132(4), 539–578 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Guionnet, A., Novak, J.: Asymptotics of unitary multimatrix models: the Schwinger–Dyson lattice and topological recursion. Preprint arXiv:1401.2703 (2014)
  35. 35.
    Guionnet A., Zeitouni O.: Large deviations asymptotics for spherical integrals. J. Funct. Anal. 188(2), 461–515 (2002)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Guth A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D 21(8), 2291–2307 (1980)ADSMathSciNetGoogle Scholar
  37. 37.
    Jaffe A., Witten E.: Quantum Yang–Mills Theory. The Millennium Prize Problems, pp. 129–152. Clay Mathematical Institute, Cambridge, MA (2006)zbMATHGoogle Scholar
  38. 38.
    Jafarov, J.: Wilson loop expectations in SU(N) lattice gauge theory. Preprint arXiv:1610.03821 (2016)
  39. 39.
    Kovtun P., Yaffe M., Yaffe L.G.: Volume independence in large N c QCD-like gauge theories. J. High Energy Phys. 2007(6), 019 (2007)Google Scholar
  40. 40.
    Lévy, T.: Yang–Mills measure on compact surfaces. Mem. Am. Math. Soc. 166(790) (2003)Google Scholar
  41. 41.
    Lévy T.: Discrete and continuous Yang–Mills measure for non-trivial bundles over compact surfaces. Probab. Theory Relat. Fields 136(2), 171–202 (2006)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Lévy, T.: The master field on the plane. Preprint arXiv:1112.2452 (2011)
  43. 43.
    Lucini B., Panero M.: SU(N) gauge theories at large N. Phys. Rep. 526(2), 93–163 (2013)ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    Lüscher M.: Construction of a self-adjoint, strictly positive transfer matrix for Euclidean lattice gauge theories. Commun. Math. Phys. 54, 283–292 (1977)ADSGoogle Scholar
  45. 45.
    Lüscher, M.: Properties and uses of the Wilson flow in lattice QCD. J. High Energy Phys. 2010(8), 071 (2010)Google Scholar
  46. 46.
    Magnen J., Rivasseau V., Sénéor R.: Construction of YM 4 with an infrared cutoff. Commun. Math. Phys. 155, 325–383 (1993)ADSzbMATHGoogle Scholar
  47. 47.
    Makeenko Y.M., Migdal A.A.: Exact equation for the loop average in multicolor QCD. Phys. Lett. B 88(1), 135–137 (1979)ADSGoogle Scholar
  48. 48.
    Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1997)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Meckes, E.: An infinitesimal version of Stein’s method of exchangeable pairs. Ph.D. thesis, Stanford University (2006)Google Scholar
  50. 50.
    Osterwalder K., Seiler E.: Gauge field theories on a lattice. Ann. Phys. 110(2), 440–471 (1978)ADSMathSciNetGoogle Scholar
  51. 51.
    Seiler E.: Upper bound on the color-confining potential. Phys. Rev. D 18(2), 482–483 (1978)ADSGoogle Scholar
  52. 52.
    Seiler E.: Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Springer, Berlin (1982)Google Scholar
  53. 53.
    Sengupta A.: Quantum gauge theory on compact surfaces. Ann. Phys. 221(1), 17–52 (1993)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Sengupta A.: Gauge Theory on Compact Surfaces. American Mathematical Society, Providence, RI (1997)zbMATHGoogle Scholar
  55. 55.
    Stein, C.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics and Probability, vol. II, pp. 583–602. University of California Press, Berkeley, CA (1972)Google Scholar
  56. 56.
    Stein, C.: Approximate computation of expectations. IMS Lecture Notes—Monograph Series, 7. Institute of Mathematical Statistics, Hayward, CA (1986)Google Scholar
  57. 57.
    Stein, C.: The accuracy of the normal approximation to the distribution of the traces of powers of random orthogonal matrices. Technical Report No. 470, Stanford University Department of Statistics, 1995 (1995)Google Scholar
  58. 58.
    ’t Hooft G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72(3), 461–473 (1974)ADSGoogle Scholar
  59. 59.
    Tomboulis E.T., Yaffe L.G.: Finite temperature SU(2) lattice gauge theory. Commun. Math. Phys. 100(3), 313–341 (1985)ADSMathSciNetGoogle Scholar
  60. 60.
    Yaffe M., Yaffe L.G.: Center-stabilized Yang–Mills theory: confinement and large N volume independence. Phys. Rev. D 78(6), 065035 (2008)ADSGoogle Scholar
  61. 61.
    Wadia, S.R.: A study of U(N) lattice gauge theory in 2-dimensions. Preprint arXiv:1212.2906 (2012)
  62. 62.
    Wilson K.G.: Confinement of quarks. Phys. Rev. D 10(8), 2445–2459 (1974)ADSGoogle Scholar
  63. 63.
    Witten E.: Gauge theories and integrable lattice models. Nucl. Phys. B 322(3), 629–697 (1989)ADSMathSciNetGoogle Scholar
  64. 64.
    Witten E.: Gauge theories, vertex models, and quantum groups. Nucl. Phys. B 330(2), 285–346 (1990)ADSMathSciNetGoogle Scholar
  65. 65.
    Witten E.: Two dimensional gauge theories revisited. J. Geom. Phys. 9(4), 303–368 (1992)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations