Skip to main content
Log in

Two-Dimensional Elliptic Determinantal Point Processes and Related Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce new families of determinantal point processes (DPPs) on a complex plane \({{\mathbb{C}}}\), which are classified into seven types following the irreducible reduced affine root systems, RN = AN−1, BN, \({B^{\vee}_N}\), CN, \({C^{\vee}_N}\), BCN, DN, \({N \in {\mathbb{N}}}\). Their multivariate probability densities are doubly periodic with periods (L, iW), \({0 < L, W < \infty}\), \({i=\sqrt{-1}}\). The construction is based on the orthogonality relations with respect to the double integrals over the fundamental domain, \({[0, L) \times i [0, W)}\), which are proved in this paper for the \({R_N}\)-theta functions introduced by Rosengren and Schlosser. In the scaling limit \({N \to \infty, L \to \infty}\) with constant density \({\rho=N/(LW)}\) and constant W, we obtain four types of DPPs with an infinite number of points on \({{\mathbb{C}}}\), which have periodicity with period iW. In the further limit \({W \to \infty}\) with constant \({\rho}\), they are degenerated into three infinite-dimensional DPPs. One of them is uniform on \({{\mathbb{C}}}\) and equivalent with the Ginibre point process studied in random matrix theory, while other two systems are rotationally symmetric around the origin, but non-uniform on \({{\mathbb{C}}}\). We show that the elliptic DPP of type AN-1 is identified with the particle section, obtained by subtracting the background effect, of the two-dimensional exactly solvable model for one-component plasma studied by Forrester. Other two exactly solvable models of one-component plasma are constructed associated with the elliptic DPPs of types CN and DN. Relationship to the Gaussian free field on a torus is discussed for these three exactly solvable plasma models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, L.D., Pereira, J.M., Romero, J.L., Torquato, S.: The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels. J. Stat. Mech. Theor. Exp. 4 043103 (2017)

    Article  MathSciNet  Google Scholar 

  2. Abreu, L.D., Gröchenig, K., Romero, J.L.: Harmonic analysis in phase space and finite Weyl–Heisenberg ensembles. J. Stat. Phys. (2019). https://doi.org/10.1007/s10955-019-02226-2

    Article  MathSciNet  Google Scholar 

  3. Abreu, L.D., Haimi, A., Koliander, G., Romero, J.L.: Filtering with wavelet zeros and Gaussian analytic functions. arXiv:1807.03183

  4. Akemann G., Cikovic M., Venker M.: Universality at weak and strong non-Hermiticity beyond the elliptic Ginibre ensemble. Commun. Math. Phys. 362, 1111–1141 (2018)

    Article  MathSciNet  Google Scholar 

  5. Ameur Y., Kang N.-G: On a problem for Ward’s equation with a Mittag–Leffler potential. Bull. Sci. Math. 137, 968–975 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ameur, Y., Kang, N.-G., Makarov, N.: Rescaling Ward identities in the random normal matrix model. Const. Approx. (2018) https://doi.org/10.1007/s00365-018-9423-9

    Article  MathSciNet  Google Scholar 

  7. Ameur, Y., Kang, N.-G., Seo, S.-M.: The random normal matrix model: insertion of a point charge. arXiv:1804.08587

  8. Anderson G.W., Guionnet A., Zeitouni O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Cardy J. (1990) Conformal invariance and statistical mechanics. In: Brézin E., Zinn-Justin J. (eds.) Fields, Strings and Critical Phenomena,(Les Houches), pp.169–246. North-Holland, Amsterdam

  10. Feldheim N.: Zeros of Gaussian analytic functions with translation-invariant distribution. Israel J. Math. 195, 317–345 (2013)

    Article  MathSciNet  Google Scholar 

  11. Forrester P.J.: Exact results for the two-dimensional two-component plasma at \({\Gamma=2}\) in doubly periodic boundary conditions. J. Stat. Phys. 61, 1141–1161 (1990)

    Article  MathSciNet  Google Scholar 

  12. Forrester P.J.: Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions. J. Phys. A: Math. Gen. 39, 13025–13036 (2006)

    Article  MathSciNet  Google Scholar 

  13. Forrester P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  14. Fyodorov Y.V., Khoruzhenko B.A., Sommers H.-J.: Universality in the random matrix spectra in the regime of weak non-Hermiticity. Ann. Inst. Henri Poincaré Phys. Théor. 68, 449–489 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Fyodorov Y.V., Simmers H.-J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A Math. Gen. 36, 3303 (2003)

    Article  MathSciNet  Google Scholar 

  16. Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MathSciNet  Google Scholar 

  17. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S. V: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  18. Hardin D.P., Saff E.B., Simanek B.Z., Su Y.: Next order energy asymptotics for Riesz potentials on flat tori. Int. Math. Res. Notices 2017, 3529–3556 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, University Lecture Series, vol.51. Amer. Math. Soc., Providence (2009)

  20. Jancovici B., Téllez G.: Coulomb systems seen as critical systems: Ideal conductor boundaries. J. Stat. Phys. 82, 609–652 (1996)

    Article  MathSciNet  Google Scholar 

  21. Kang, N.-G., Makarov, N.G.: Calculus of conformal fields on a compact Riemann surface. arXiv:1708.07361

  22. Katori M.: Elliptic determinantal process of type A. Probab. Theory Relat. Fields 162, 637–677 (2015)

    Article  MathSciNet  Google Scholar 

  23. Katori M.: Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model, Springer Briefs in Mathematical Physics 11. Springer, Tokyo (2015)

    Google Scholar 

  24. Katori, M.: Elliptic Bessel processes and elliptic Dyson models realized as temporally inhomogeneous processes. J. Math. Phys. 57, 103302/1–32 (2016)

    Article  MathSciNet  Google Scholar 

  25. Katori, M.: Elliptic determinantal processes and elliptic Dyson models. SIGMA 13, 079, 36 pages (2017)

  26. Katori, M.: Macdonald denominators for affine root systems, orthogonal theta functions, and elliptic determinantal point processes. J. Math. Phys. 60, 013301/1–27 (2019)

    Article  MathSciNet  Google Scholar 

  27. Katori, M., Shirai, T.: in preparation

  28. Katori M., Tanemura H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010)

    Article  MathSciNet  Google Scholar 

  29. Krattenthaler C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411, 68–166 (2005)

    Article  MathSciNet  Google Scholar 

  30. Macdonald I.G.: Affine root systems and Dedekind’s \({\eta}\)-function. Invent. Math. 15, 91–143 (1972)

    Article  MathSciNet  Google Scholar 

  31. Marzo J., Ortega-Cerdà à J.: Expected Riesz energy of some determinantal processes on flat tori. Constr. Approx. 47, 75–88 (2018)

    Article  MathSciNet  Google Scholar 

  32. Mehta M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  33. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W. (eds).: NIST Handbook of Mathematical Functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC (2010). http://dlmf.nist.gov

  34. Osborn J.C.: Universal results from an alternate random-matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93, 222001 (2004)

    Article  Google Scholar 

  35. Paley, R.E.A.C., Wiener, N.: Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publications, vol.XIX. Amer. Math. Soc., Providence (1934)

  36. Rosengren H., Schlosser M.: Elliptic determinant evaluations and the Macdonald identities for affine root systems. Compos. Math. 142, 937–961 (2006)

    Article  MathSciNet  Google Scholar 

  37. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MathSciNet  Google Scholar 

  38. Shirai T.: Ginibre-type point processes and their asymptotic behavior. J. Math. Soc. Japan 67, 763–787 (2015)

    Article  MathSciNet  Google Scholar 

  39. Soshnikov A.: Determinantal random point fields. Russian Math. Surveys 55, 923–975 (2000)

    Article  MathSciNet  Google Scholar 

  40. Shirai T., Takahashi Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point process. J. Funct. Anal. 205, 414–463 (2003)

    Article  MathSciNet  Google Scholar 

  41. Shirai T., Takahashi Y.: Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31, 1533–1564 (2003)

    Article  MathSciNet  Google Scholar 

  42. Warnaar S.O.: Summation and transformation formulas for elliptic hypergeometric series. Constr. Approx. 18, 479–502 (2002)

    Article  MathSciNet  Google Scholar 

  43. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

Download references

Acknowledgements

On sabbatical leave from Chuo University, this study was done in Fakultät für Mathe matik, Universität Wien, in which the present author thanks Christian Krattenthaler very much for his hospitality. The author thanks Peter John Forrester for useful comments on the two-dimensional Coulomb gas models. He also expresses his gratitude to Michael Schlosser and Tomoyuki Shirai for valuable discussion concerning the present study. This work was supported by the Grant-in-Aid for Scientific Research (C) (No. 26400405), (B) (No. 18H01124), and (S) (No. 16H06338) of Japan Society for the Promotion of Science. It was also supported by the Research Institute for Mathematical Sciences (RIMS), a Joint Usage/Research Center located in Kyoto University. The author thanks Naotaka Kajino, Takashi Kumagai, and Daisuke Shiraishi for organizing the very fruitful workshop, ‘RIMS Research Project: Gaussian Free Fields and Related Topics’, held in 18–21 September 2018 at RIMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Additional information

Communicated by H. Spohn

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

On sabbatical leave from Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katori, M. Two-Dimensional Elliptic Determinantal Point Processes and Related Systems. Commun. Math. Phys. 371, 1283–1321 (2019). https://doi.org/10.1007/s00220-019-03351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03351-5

Navigation