Advertisement

Analytic Hadamard States, Calderón Projectors and Wick Rotation Near Analytic Cauchy Surfaces

  • Christian Gérard
  • Michał WrochnaEmail author
Article

Abstract

We consider the Klein–Gordon equation on analytic spacetimes with an analytic Cauchy surface. In this setting, we prove the existence of pure analytic Hadamard states. The proof is based on considering an elliptic operator obtained by Wick rotating the Klein–Gordon operator in a neighborhood of a Cauchy hypersurface. The Cauchy data of Hadamard two-point functions are constructed as Calderón projectors (suitably generalized if the hypersurface is non-compact) for the elliptic operator.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Pierre Schapira for all the useful discussions. Support from the Grants ANR-12-BS01-012-01 and ANR-16-CE40-0012-01 is gratefully acknowledged.

References

  1. AFLR.
    Azagra D., Ferrera J., López-Mesas F., Rangel Y.: Smooth approximation of Lipschitz functions on Riemannian manifolds. J. Math. Anal. Appl. 326, 1370–1378 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. BGP.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics, European Mathematical Society Publishing House, ISBN 978-3-03719-037-1, 2007 (2007)Google Scholar
  3. B.
    Bony, J.M.: Équivalence des diverses notions de spectre singulier analytique. Séminaire Équations aux dérivées partielles (Polytechnique), Talk no. 3, pp. 1–12 (1977)Google Scholar
  4. BF.
    Brum M., Fredenhagen K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quantum Gravity 31(2), 025024 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. BFK.
    Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved space–times. Commun. Math. Phys. 180, 633–652 (1996)ADSCrossRefzbMATHGoogle Scholar
  6. BFV.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)ADSCrossRefzbMATHGoogle Scholar
  7. BJ.
    Brum M., Jorás S.E.: Hadamard state in Schwarzschild–de Sitter spacetime. Class. Quantum Gravity 32(1), 015013 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. BT.
    Brum M., Them K.: States of low energy on homogeneous and inhomogeneous, expanding spacetimes. Class. Quantum Gravity 30, 235035 (2013)ADSCrossRefzbMATHGoogle Scholar
  9. DG.
    Dereziński J., Gérard C.: Mathematics of Quantization and Quantum Fields, Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  10. DMP1.
    Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. DMP2.
    Dappiaggi C., Moretti V., Pinamonti N.: Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15, 355 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. FNW.
    Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved space–time, II. Ann. Phys. 136, 243–272 (1981)ADSCrossRefzbMATHGoogle Scholar
  13. Ge.
    Gérard, C.: On the Hartle–Hawking–Israel states for spacetimes with static bifurcate Killing horizons (preprint). arXiv:1608.06739 (2016)
  14. GHV.
    Gell-Redman J., Haber N., Vasy A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342(1), 333–384 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. GW1.
    Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713–755 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. GW2.
    Gérard C., Wrochna M.: Hadamard states for the linearized Yang–Mills equation on curved spacetime. Commun. Math. Phys. 337, 253–320 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. GW3.
    Gérard, C., Wrochna, M.: Hadamard property of the in and out states for Klein–Gordon fields on asymptotically static spacetimes, acc. Ann. Henri Poincaré. 18(8), 2715–2756 (2017)Google Scholar
  18. GW4.
    Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes I, acc. in Am. J. Math. arXiv:1609.00192 (2016)
  19. GOW.
    Gérard C., Oulghazi O., Wrochna M.: Hadamard states for the Klein–Gordon equation on Lorentzian manifolds of bounded geometry. Commun. Math. Phys. 352(2), 352–519 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. Gr.
    Grubb G.: Distributions and Operators, Graduate Texts in Mathematics. Springer, Berlin (2009)Google Scholar
  21. Ho.
    Hollands S.: Hadamard condition for Dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. HW.
    Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. In: Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M. (eds.) General Relativity and Gravitation: A Centennial Perspective. Cambridge University Press (2015)Google Scholar
  23. H1.
    Hörmander L.: Linear Partial Differential Operators. Springer, Berlin (1963)CrossRefzbMATHGoogle Scholar
  24. H2.
    Hörmander L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1990)zbMATHGoogle Scholar
  25. H3.
    Hörmander L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1994)Google Scholar
  26. H4.
    Hörmander L.: Uniqueness theorems and wavefront sets for solutions of linear differential equations with analytic coefficients. Commun. Pure Appl. Math. 24, 671–704 (1971)CrossRefzbMATHGoogle Scholar
  27. Ju.
    Junker W.: Hadamard States, adiabatic vacua and the construction of physical states for scalar quantum fields on curved spacetime. Rev. Math. Phys. 8, 1091–1159 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. JS.
    Junker W., Schrohe E.: Adiabatic vacuum states on general space–time manifolds: definition, construction, and physical properties. Ann. Henri Poincaré. 3, 1113–1181 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Ka.
    Kaneko A.: Introduction to Hyperfunctions, Mathematics and Its Applications. Kluwer, Dordrecht (1988)Google Scholar
  30. Kn.
    Kankaanrinta M.: Some basic results concerning G−invariant Riemannian metrics. J. Lie Theory 18, 243–251 (2008)MathSciNetzbMATHGoogle Scholar
  31. K.
    Kato, T.: Perturbation Theory for Linear Operators, Springer Classics in Mathematics. Springer-Verlag, Berlin (1995)Google Scholar
  32. Kw.
    Kawai T.: Construction of local elementary solutions for linear partial differential operators with real analytic coefficients. Publ. R.I.M.S. Kyoto Univ. 7, 363–397 (1971)CrossRefzbMATHGoogle Scholar
  33. KW.
    Kay B.S., Wald R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon. Phys. Rep. 207, 49–136 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. KM.
    Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. In: Ashtekar, A., Berger, B.K., Isenberg, J., MacCallum, M. (eds.) Advances in Algebraic Quantum Field Theory. Springer (2015)Google Scholar
  35. Ko.
    Komatsu, H.: Microlocal analysis in Gevrey classes and in complex domains in Microlocal Analysis and Applications C.I.M.E. Lectures Montecatini Terme L. Cattabriga L. Rodino eds. Springer (1989)Google Scholar
  36. Mo.
    Moretti V.: Quantum out-states holographically induced by asymptotic flatness: invariance under space–time symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31–75 (2008)ADSCrossRefzbMATHGoogle Scholar
  37. Ol.
    Olbermann H.: States of low energy on Robertson–Walker spacetimes. Class. Quantum Gravity 24, 5011 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. R1.
    Radzikowski M.: Micro-local approach to the Hadamard condition in quantum field theory on curved spacetime. Commun. Math. Phys. 179, 529–553 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. R2.
    Radzikowski M.: A local to global singularity theorem for quantum field theory on curved spacetime. Commun. Math. Phys. 1801, 1–22 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. Sa1.
    Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. Sa2.
    Sanders K.: On the construction of Hartle–Hawking–Israel state across a static bifurcate Killing horizon. Lett. Math. Phys. 105(4), 575–640 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. SV.
    Sahlmann H., Verch R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705–731 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. SKK.
    Sato, M., Kawai, T. Kashiwara, K.: Hyperfunctions and Pseudodifferential Equations in Springer Lectures Notes in Mathematics, vol. 287. Springer-Verlag, Berlin (1971)Google Scholar
  44. Sch.
    Schapira, P.: Wick rotation for D-modules. Math. Phys. Anal. Geom. 20, 21 (2017)Google Scholar
  45. Sh.
    Shubin M.A.: Pseudo-Differential Operators and Spectral Theory. Springer, Berlin (2001)CrossRefGoogle Scholar
  46. S.
    Strohmaier A.: The Reeh–Schlieder Property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. SVW.
    Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved space–times: analytic wavefront sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. VW.
    Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes Ann. Henri Poincaré. 19(5), 1529–1586 (2018)Google Scholar
  49. V.
    Verch R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité Paris-Sud XIOrsay CedexFrance
  2. 2.CNRS, Institut FourierUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations