Lieb–Schultz–Mattis Type Theorems for Quantum Spin Chains Without Continuous Symmetry
- 12 Downloads
Abstract
We prove that a quantum spin chain with half-odd-integral spin cannot have a unique ground state with a gap, provided that the interaction is short ranged, translation invariant, and possesses time-reversal symmetry or \({\mathbb{Z}_{2} \times \mathbb{Z}_{2}}\) symmetry (i.e., the symmetry with respect to the \({\pi}\) rotations of spins about the three orthogonal axes). The proof is based on the deep analogy between the matrix product state formulation and the representation of the Cuntz algebra in the von Neumann algebra \({\pi(\mathcal{A}_{R})''}\) constructed from the ground state restricted to the right half-infinite chain.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
It is a pleasure to thank HarukiWatanabe for valuable discussion which was essential for the present work, and Tohru Koma for useful discussion and comments. We also thank TakuMatsui and Bruno Nachtergaele for useful comments. The present work was supported by JSPS Grants-in-Aid for Scientific Research nos. 16K05171 (Y.O.) and 16H02211 (H.T.).
References
- AL.Affleck I., Lieb E.H.: A proof of part of Haldane’s conjecture on spin chains. Lett. Math. Phys. 12, 57–69 (1986)ADSMathSciNetCrossRefGoogle Scholar
- AN.Aizenman, M., Nachtergaele, B.: Geometric aspects of quantum spin states. Commun. Math. Phys. 164, 17–63 (1994) https://projecteuclid.org/euclid.cmp/1104270709
- A.Arveson, W.B.: Continuous Analogues of Fock space I, vol. 409. Memoirs of the American Mathematical Society, Providence (1989)Google Scholar
- BJKW.Bratteli O., Jorgensen P., Kishimoto A., Werner R.F.: Pure states on \({\mathcal{O}_d}\). J. Oper. Theory 43, 97–143 (2000)Google Scholar
- BJP.Bratteli, O., Jorgensen, P., Price, G.: Endomorphisms of \({B(\mathcal{H})}\). Quantization, nonlinear partial differential equations, and operator algebra, pp. 93–138. In: Proceedings of Symposia in Pure Mathematics, vol. 59 (1996) https://www.duo.uio.no/handle/10852/43152
- BJ.Bratteli O., Jorgensen P.E.T.: Endomorphisms of B(H) II. Finitely correlated states on O n. J. Funct. Anal. 145, 323–373 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- BR1.Bratteli O., Robinson D.W.: Operator Algebras and Quntum Statistical Mechanics 1. Springer, Berlin (1986)Google Scholar
- BR2.Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (1996)zbMATHGoogle Scholar
- CGW.Chen X., Gu Z.-C., Wen X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B. 83, 035107 (2011) arXiv:1008.3745 ADSCrossRefGoogle Scholar
- DL.Doplicher S., Longo R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- FNW.Fannes, M., Nachtergaele, B., Werner, R. F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992) https://projecteuclid.org/euclid.cmp/1104249404
- H1.Hastings, M.: An area law for one-dimensional quantum systems. J. Stat. Mech. P08024 (2007) arXiv:0705.2024
- H2.Hastings M.B.: Lieb–Schultz–Mattis in higher dimensions. Phys. Rev. B. 69, 104431 (2004) arXiv:1001.5280 ADSCrossRefGoogle Scholar
- H3.Hastings M.B.: Sufficient conditions for topological order in insulators. Eur. Phys. Lett. 70, 824–830 (2005) arXiv:cond-mat/0411094 ADSCrossRefGoogle Scholar
- LSM.Lieb E., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- M1.Matsui T.: A characterization of finitely correlated pure states. Infinite Dimens. Anal. Quantum Probab. 1, 647–661 (1998)CrossRefzbMATHGoogle Scholar
- M2.Matsui T.: The split property and the symmetry breaking of the quantum spin chain. Commun. Math. Phys. 218, 393–416 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- M3.Matsui, T.: Boundedness of entanglement entropy and split property of quantum spin chains. Rev. Math. Phys. 1350017 (2013). arXiv:1109.5778
- N.Nachtergaele, B.: Private communicationGoogle Scholar
- NS.Nachtergaele B., Sims R.: A multi-dimensional Lieb–Schultz–Mattis theorem. Commun. Math. Phys. 276, 437–472 (2007) arXiv:math-ph/0608046 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- O.Oshikawa M.: Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett. 84, 1535 (2000) arXiv:cond-mat/9911137 ADSCrossRefGoogle Scholar
- OYA.Oshikawa M., Yamanaka M., Affleck I.: Magnetization plateaus in spin chains: “Haldane gap” for half-integer spins. Phys. Rev. Lett. 78, 1984 (1997) arXiv:cond-mat/9610168 ADSCrossRefGoogle Scholar
- PTAV.Parameswaran S.A., Turner A.M., Arovas D.P., Vishwanath A.: Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013) arXiv:1212.0557 CrossRefGoogle Scholar
- PWSVC.Perez-Garcia D., Wolf M.M., Sanz M., Verstraete F., Cirac J.I.: String order and symmetries in quantum spin lattices. Phys. Rev. Lett. 100, 167202 (2008) arXiv:0802.0447 ADSCrossRefGoogle Scholar
- PTBO.Pollmann F., Turner A.M., Berg E., Oshikawa M.: Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B. 81, 064439 (2010) arXiv:0910.1811 ADSCrossRefGoogle Scholar
- S.Sutherland B.: Beautiful Models—70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (2004)CrossRefzbMATHGoogle Scholar
- Tak.Takesaki M.: Theory of Operator Algebras. I. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2002)zbMATHGoogle Scholar
- Tas1.Tasaki H.: Lieb–Schultz–Mattis theorem with a local twist for general one-dimensional quantum systems. J. Stat. Phys. 170, 653–671 (2018) arXiv:1708.05186 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- Tas2.Tasaki, H.: Physics and Mathematics of Quantum Many-Body Systems (to be published from Springer)Google Scholar
- YOA.Yamanaka M., Oshikawa M., Affleck I.: Nonperturbative approach to Luttinger’s theorem in one dimension. Phys. Rev. Lett. 79, 1110 (1997) arXiv:cond-mat/9701141 ADSCrossRefGoogle Scholar
- Wa.Watanabe H.: The Lieb–Schultz–Mattis-type filling constraints in the 1651 magnetic space groups. Phys. Rev. B. 97, 165117 (2018) arXiv:1802.00587 ADSCrossRefGoogle Scholar
- WPVZ.Watanabe, H., Po, H.C., Vishwanath, A., Zaletel, M.P.: Filling constraints for spin–orbit coupled insulators in symmorphic and nonsymmorphic crystals. Proc. Natl. Acad. Sci. USA 112, 14551–14556 (2015) http://www.pnas.org/content/112/47/14551.short
- ZCZW.Zeng, B., Chen, X., Zhou, D.-L., Wen, X.-G.: Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phase in Many-Body Systems (to be published from Springer) arXiv:1508.02595