Advertisement

Remarks on the Green–Schwarz Terms of Six-Dimensional Supergravity Theories

  • Samuel MonnierEmail author
  • Gregory W. Moore
Article
  • 11 Downloads

Abstract

We construct the Green–Schwarz terms of six-dimensional supergravity theories on spacetimes with non-trivial topology and gauge bundle. We prove the cancellation of all global gauge and gravitational anomalies for theories with gauge groups given by products of U(n), SU(n) and Sp(n) factors, as well as for E8. For other gauge groups, anomaly cancellation is equivalent to the triviality of a certain 7-dimensional spin topological field theory. We show in the case of a finite Abelian gauge group that there are residual global anomalies imposing constraints on the 6d supergravity. These constraints are compatible with the known F-theory models. Interestingly, our construction requires that the gravitational anomaly coefficient of the 6d supergravity theory is a characteristic element of the lattice of string charges, a fact true in six-dimensional F-theory compactifications but that until now was lacking a low-energy explanation. We also discover a new anomaly coefficient associated with a torsion characteristic class in theories with a disconnected gauge group.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Daniel Park for discussions that led to this project.We also thank Dan Freed,Mike Hopkins, Graeme Segal,Wati Taylor, Andrew Turner, Nathan Seiberg and Edward Witten for useful discussions. G.M. is supported by the DOE under grant DOE-SC0010008 to Rutgers University. S.M. is supported in part by the grant MODFLAT of the European Research Council, SNSF grants No. 152812, 165666, and by NCCR SwissMAP, funded by the Swiss National Science Foundation.

References

  1. 1.
    Taylor, W.: TASI lectures on supergravity and string vacua in various dimensions. arXiv:1104.2051
  2. 2.
    Kumar V., Morrison D.R., Taylor W.: Global aspects of the space of 6D N = 1 supergravities. JHEP 11, 118 (2010)  https://doi.org/10.1007/JHEP11(2010)118 arXiv:1008.1062 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Monnier, S., Moore, G.W., Park, D.S.: Quantization of anomaly coefficients in 6D \({\mathcal{N}=(1,0)}\) supergravity. arXiv:1711.04777
  4. 4.
    Freed D.S.: Anomalies and invertible field theories. Proc. Symp. Pure Math. 88, 25–46 (2014)  https://doi.org/10.1090/pspum/088/01462 arXiv:1404.7224 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freed D.S., Moore G.W.: Setting the quantum integrand of M-theory. Commun. Math. Phys. 263, 89–132 (2006)  https://doi.org/10.1007/s00220-005-1482-7 arXiv:hep-th/0409135 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Monnier S.: Hamiltonian anomalies from extended field theories. Commun. Math. Phys. 338, 1327–1361 (2015) arXiv:1410.7442 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Witten E.: World sheet corrections via D instantons. JHEP 02, 030 (2000)  https://doi.org/10.1088/1126-6708/2000/02/030 arXiv:hep-th/9907041 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dai X.-Z., Freed D.S.: Eta invariants and determinant lines. J. Math. Phys. 35, 5155–5194 (1994)  https://doi.org/10.1063/1.530747 arXiv:hep-th/9405012 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Freed, D.S., Hopkins, M.J.: Reflection positivity and invertible topological phases. arXiv:1604.06527
  10. 10.
    Freed D.S., Quinn F.: Chern–Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993)  https://doi.org/10.1007/BF02096860 arXiv:hep-th/9111004 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129, 393 (1990)  https://doi.org/10.1007/BF02096988 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jenquin, J.A.: Classical Chern–Simons on manifolds with spin structure. arXiv:math/0504524
  13. 13.
    Jenquin, J.A.: Spin Chern-Simons and spin TQFTs. arXiv:math/0605239
  14. 14.
    Belov, D., Moore, G.W.: Classification of abelian spin Chern–Simons theories. arXiv:hep-th/0505235
  15. 15.
    Monnier, S.: Topological field theories on manifolds with Wu structures. Rev. Math. Phys. 29 (2017). arXiv:1607.01396
  16. 16.
    Seiberg N., Taylor W.: Charge lattices and consistency of 6D supergravity. JHEP 06, 001 (2011)  https://doi.org/10.1007/JHEP06(2011)001 arXiv:1103.0019 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Henningson M.: Self-dual strings in six dimensions: Anomalies, the ADE-classification, and the world-sheet WZW-model. Commun. Math. Phys. 257, 291–302 (2005)  https://doi.org/10.1007/s00220-005-1324-7 arXiv:hep-th/0405056 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Berman D.S., Harvey J.A.: The self-dual string and anomalies in the M5-brane. JHEP 11, 015 (2004)  https://doi.org/10.1088/1126-6708/2004/11/015 arXiv:hep-th/0408198 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kim, H.-C., Kim, S., Park, J.: 6d strings from new chiral gauge \({\mathcal{N}=\left(1,0\right)}\) theories.  https://doi.org/10.1007/JHEP11(2016)165 arXiv:1608.03919
  20. 20.
    Shimizu H., Tachikawa Y.: Anomaly of strings of 6d \({ \mathcal{N}=\left(1,0\right) }\) theories. JHEP 11, 165 (2016) arXiv:1608.05894 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Freed, D.S.: Dirac charge quantization and generalized differential cohomology. arXiv:hep-th/0011220
  22. 22.
    Freed D.S., Moore G.W., Segal G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322, 236–285 (2007)  https://doi.org/10.1016/j.aop.2006.07.014 arXiv:hep-th/0605200 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Minasian R., Moore G.W.: K-theory and Ramond–Ramond charge. JHEP 11, 002 (1997) arXiv:hep-th/9710230 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Witten E.: D-branes and K-theory. JHEP 12, 019 (1998) arXiv:hep-th/9810188 ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Distler, J., Freed, D.S., Moore, G.W.: Orientifold precis. arXiv:0906.0795
  26. 26.
    Monnier, S., Moore, G.W.: A brief summary of global anomaly cancellation in six-dimensional supergravity. arXiv:1808.01335
  27. 27.
    Avramis, S.D.: Anomaly-free supergravities in six dimensions. arXiv:hep-th/0611133
  28. 28.
    Polchinski J.: Monopoles, duality, and string theory. Int. J. Mod. Phys. A 19S1, 145–156 (2004)  https://doi.org/10.1142/S0217751X0401866X arXiv:hep-th/0304042 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Banks T., Seiberg N.: Symmetries and strings in field theory and gravity. Phys. Rev. D 83, 084019 (2011)  https://doi.org/10.1103/PhysRevD.83.084019 arXiv:1011.5120 ADSCrossRefGoogle Scholar
  30. 30.
    Green M.B., Schwarz J.H., West P.C.: Anomaly free chiral theories in six-dimensions. Nucl. Phys. B 254, 327–348 (1985)  https://doi.org/10.1016/0550-3213(85)90222-6 ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sagnotti A.: A note on the Green–Schwarz mechanism in open string theories. Phys. Lett. B 294, 196–203 (1992)  https://doi.org/10.1016/0370-2693(92)90682-T arXiv:hep-th/9210127 ADSCrossRefGoogle Scholar
  32. 32.
    Sadov V.: Generalized Green–Schwarz mechanism in F theory. Phys. Lett. B 388, 45–50 (1996)  https://doi.org/10.1016/0370-2693(96)01134-3 arXiv:hep-th/9606008 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Riccioni F.: All couplings of minimal six-dimensional supergravity. Nucl. Phys. B 605, 245–265 (2001)  https://doi.org/10.1016/S0550-3213(01)00199-7 arXiv:hep-th/0101074 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Green M.B., Schwarz J.H.: Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B 149, 117–122 (1984)  https://doi.org/10.1016/0370-2693(84)91565-X ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Witten E.: Global gravitational anomalies. Commun. Math. Phys. 100, 197–229 (1985)  https://doi.org/10.1007/BF01212448 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Monnier S.: The global anomalies of (2,0) superconformal field theories in six dimensions. JHEP 09 (2014).  https://doi.org/10.1007/JHEP09(2014)088 arXiv:1406.4540
  37. 37.
    Bismut J.-M., Freed D.S.: The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. 107, 103–163 (1986)  https://doi.org/10.1016/S0393-0440(97)80160-X ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Fiorenza, D., Valentino, A.: Boundary conditions for topological quantum field theories, anomalies and projective modular functors. Commun. Math. Phys. 338 (2015). arXiv:1409.5723
  39. 39.
    Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambr. Philos. Soc. 77, 43–69 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Witten E.: Five-brane effective action in M-theory. J. Geom. Phys. 22, 103–133 (1997) arXiv:hep-th/9610234 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Maldacena J.M., Moore G.W., Seiberg N.: D-brane charges in five-brane backgrounds. JHEP 10, 005 (2001) arXiv:hep-th/0108152 ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038
  43. 43.
    Monnier S.: The global gravitational anomaly of the self-dual field theory. Commun. Math. Phys. 325, 73–104 (2014)  https://doi.org/10.1007/s00220-013-1845-4 arXiv:1110.4639 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Taylor, L.R.: Gauss sums in algebra and topology. http://www3.nd.edu/~taylor/papers/Gauss_sums.pdf. Accessed 3 Feb 2019
  45. 45.
    Monnier, S.: The anomaly field theories of six-dimensional (2,0) superconformal theories. arXiv:1706.01903
  46. 46.
    Bershadsky, M., Vafa, C.: Global anomalies and geometric engineering of critical theories in six-dimensions. arXiv:hep-th/9703167
  47. 47.
    Suzuki R., Tachikawa Y.: More anomaly-free models of six-dimensional gauged supergravity. J. Math. Phys. 47, 062302 (2006)  https://doi.org/10.1063/1.2209767 arXiv:hep-th/0512019 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Cheeger, J., Simons, J.: Differential characters and geometric invariants. In: Geometry and Topology, vol. 1167 of Lecture Notes in Mathematics, pp. 50–80. Springer Berlin (1985).  https://doi.org/10.1007/BFb0075216
  49. 49.
    Hopkins M.J., Singer I.M.: Quadratic functions in geometry, topology, and M-theory. J. Diff. Geom. 70, 329 (2005) arXiv:math/0211216 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Freed, D.S., Moore G.W., Segal G.: The uncertainty of fluxes. Commun.Math.Phys. 271, 247–274 (2007)  https://doi.org/10.1007/s00220-006-0181-3 arXiv:hep-th/0605198 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Witten E.: Topological tools in ten-dimensional physics. Int. J. Mod. Phys. A 1, 39 (1986)  https://doi.org/10.1142/S0217751X86000034 ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Witten E.: Duality relations among topological effects in string theory. JHEP 05, 031 (2000) arXiv:hep-th/9912086 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Diaconescu, E., Moore, G.W., Freed, D.S.: The M-theory 3-form and E(8) gauge theory. arXiv:hep-th/0312069
  54. 54.
    Monnier S.: The global anomaly of the self-dual field in general backgrounds. Ann. Henri Poincaré 17, 1003–1036 (2016) arXiv:1309.6642 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Brumfiel G.W., Morgan J.W.: Quadratic functions, the index modulo 8 and a Z/4-Hirzebruch formula. Topology 12, 105–122 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Steenrod N.E.: Products of cocycles and extensions of mappings. Ann. Math. 48, 290–320 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Gilkey, P., Leahy, J., Park, J.: Spectral Geometry, Riemannian Submersions, and the Gromov–Lawson Conjecture. Studies in Advanced Mathematics. Taylor & Francis (1999)Google Scholar
  58. 58.
    Taylor W., Turner A.P.: An infinite swampland of U(1) charge spectra in 6d supergravity theories. JHEP 06, 010 (2018)  https://doi.org/10.1007/JHEP06(2018)010 arXiv:1803.04447 ADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Stong R.: Notes on Cobordism Theory. Princeton University Press, Princeton (1968)zbMATHGoogle Scholar
  60. 60.
    Witten, E.: Anomalies revisited, talk at strings (2015). https://member.ipmu.jp/yuji.tachikawa/stringsmirrors/2015/6-2.00-2.30-Edward-Witten.pdf. Accessed 3 Feb 2019
  61. 61.
    Yuan, Q.: Answer to “Spin manifold and the second Stiefel–Whitney class” (2014). https://math.stackexchange.com/questions/808263. Accessed 3 Feb 2019
  62. 62.
    Freed, D.S.: Classical Chern–Simons theory, Part 2. Houston J. Math. 28, 293–310 (2005)Google Scholar
  63. 63.
    Freed, D.S.: Pions and generalized cohomology. arXiv:hep-th/0607134
  64. 64.
    García-Etxebarria, I., Montero, M.: Dai–Freed anomalies in particle physics. arXiv:1808.00009
  65. 65.
    Zhubr, A.V.: Spin bordism of oriented manifolds and the hauptvermuting for 6-manifolds. In: Turaev, V., Vershik, A., Rokhlin, V. (eds.) Topology, Ergodic Theory, Real Algebraic Geometry. Rokhlin’s memorial, pp. 263–286. American Mathematical Society (2001)Google Scholar
  66. 66.
    Brown E.: The cohomology of BSO n and BO n with integer coefficients. Proc. Am. Math. Soc. 85, 283–288 (1982)Google Scholar
  67. 67.
    Mimura, M., Toda, H.: Topology of Lie Groups I & II, vol. 91 of Translations of Mathematical Monographs. American Mathematical Society (1991)Google Scholar
  68. 68.
    Breen L., Mikhailov R., Touzé A.: Derived functors of the divided power functors. Geom. Topol. 20, 257–352 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Smirnov V.A.: Secondary Steenrod operations in cohomology of infinite-dimensional projective spaces. Math. Notes 79, 440–445 (2006)  https://doi.org/10.1007/s11006-006-0050-6 MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Kapustin A., Thorngren R., Turzillo A., Wang Z.: Fermionic symmetry protected topological phases and cobordisms. JHEP 12, 052 (2015)  https://doi.org/10.1007/JHEP12(2015)052 arXiv:1406.7329 ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland
  2. 2.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations