Advertisement

Regular Flat Structure and Generalized Okubo System

  • Hiroshi Kawakami
  • Toshiyuki ManoEmail author
Article

Abstract

We study a relationship between regular flat structures and generalized Okubo systems. We show that the space of variables of isomonodromic deformations of a regular generalized Okubo system can be equipped with a flat structure. As its consequence, we introduce flat structures on the spaces of independent variables of generic solutions to (classical) Painlevé equations (except for PI). In our framework, the Painlevé equations PVI–PII can be treated uniformly as just one system of differential equations called the four-dimensional extended WDVV equation. Then the well-known coalescence cascade of the Painlevé equations corresponds to the degeneration scheme of the Jordan normal forms of a square matrix of rank four.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank Professor C. Hertling for reading a preprint and giving useful comments on it and Professor M. Noumi for useful discussions. This work was partially supported by JSPS KAKENHI Grant Nos. 25800082, 17K05335.

References

  1. 1.
    Arsie A., Lorenzoni P.: From Darboux–Egorov system to bi-flatF-manifolds. J. Geom. Phys.70, 98–116 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arsie, A., Lorenzoni, P.:F-manifolds, multi-flat structures and Painlevé transcendents. arXiv:1501.06435
  3. 3.
    Arsie A., Lorenzoni P.: Complex reflection groups, logarithmic connections and bi-flatF-manifolds. Lett. Math. Phys.107, 1919–1961 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    David L., Hertling C.: RegularF-manifolds: initial conditions and Frobenius metrics. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)17, 1121–1152 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dettweiler M., Reiter S.: An algorithm of Katz and its application to the inverse Galois problem. J. Symb. Comput.30, 761–798 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dettweiler M., Reiter S.: Middle convolution of Fuchsian systems and the construction of rigid differential systems. J. Algebra318, 1–24 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dubrovin, B.: Geometry of 2D topological field theories. In: Francoviglia, M., Greco S. (eds.) Integrable systems and quantum groups. Montecatini, Terme 1993. Lecture Notes in Mathematics 1620, pp. 120–348. Springer, Berlin (1996)Google Scholar
  8. 8.
    Haraoka, Y.: Linear differential equations on a complex domain. Sugakushobou (2015) (in Japanese) Google Scholar
  9. 9.
    Hertling C.: Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hertling C., Manin Y.: Weak Frobenius manifolds. Int. Math. Res. Not.1999(6), 277–286 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé. Aspects of Mathematics E16, Vieweg (1991)Google Scholar
  12. 12.
    Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. Phys. 2D 2, 306–352 (1981)Google Scholar
  13. 13.
    Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. 2D2, 407–448 (1981)Google Scholar
  14. 14.
    Kato M., Mano T., Sekiguchi J.: Flat structures without potentials. Rev. Roumaine Math. Pures Appl.60(4), 481–505 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kato, M., Mano, T., Sekiguchi, J.: Flat structure on the space of isomonodromic deformations. arXiv:1511.01608
  16. 16.
    Kato, M., Mano, T., Sekiguchi, J.: Flat structures and algebraic solutions to Painlevé VI equation. “Analytic, Algebraic and Geometric Aspects of Differential Equations” in Trend in Mathematics Series. Springer, Berlin, pp. 383–398 (2017)Google Scholar
  17. 17.
    Kato M., Mano T., Sekiguchi J.: Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation. Opusc. Math.38, 201–252 (2018)CrossRefzbMATHGoogle Scholar
  18. 18.
    Katz, N.M.: Rigid local systems (AM-139). Princeton University Press, Princeton (1996)Google Scholar
  19. 19.
    Kawakami, H.: Generalized Okubo systems and the middle convolution. Doctor thesis, University of Tokyo (2009)Google Scholar
  20. 20.
    Kawakami H.: Generalized Okubo Systems and the Middle Convolution. Int. Math. Res. Not.2010(17), 3394–3421 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Konishi Y., Minabe S.: Mixed Frobenius structure and local quantum cohomology. Publ. Res. Inst. Math. Sci.52(1), 43–62 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Konishi Y., Minabe S., Shiraishi Y.: Almost duality for Saito structure and complex reflection groups. J. Integr. Syst.3, 1–48 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lorenzoni P.: Darboux-Egorov system, bi-flatF-manifolds and Painlevé VI. Int. Math. Res. Not.2014(12), 3279–3302 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Losev A., Manin, Y.: Extended modular operads. In: Hertling, C., Marcoli, M. (eds.) Frobenius manifolds, quantum cohomology and singularities, vol. E36, pp. 181-211. Aspects of mathematics (2004)Google Scholar
  25. 25.
    Manin Y.:F-manifolds with flat structure and Dubrovin’s duality. Adv. Math.198(1), 5–26 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Okamoto K.: Studies on the Painlevé equations II. Fifth Painlevé equationP V. Jpn. J. Math.13, 47–76 (1987)CrossRefzbMATHGoogle Scholar
  27. 27.
    Okamoto K.: Studies on the Painlevé equations III. Second and fourth Painlevé equations,P II andP IV. Math. Ann.275, 221–255 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Okamoto K.: Studies on the Painlevé equations IV. Third Painleve equationP III. Funkc. Ekvac. Ser. Int.30, 305–332 (1987)zbMATHGoogle Scholar
  29. 29.
    Okubo, K.: Connection problems for systems of linear differential equations. Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971), Vol. 243, pp. 238–248. Lecture Notes in Mathematics. Springer, Berlin (1971)Google Scholar
  30. 30.
    Oshima, T.: Fractional calculus of Weyl algebra and Fuchsian differential equations. MSJ Mem.28 (2012)Google Scholar
  31. 31.
    Oshima, T.: Classification of Fuchsian systems and their connection problem. Exact WKB analysis and microlocal analysis. RIMS Kokyuroku BesssatsuB37, 163–192 (2013)Google Scholar
  32. 32.
    Oshima T.: Katz’s middle convolution and Yokoyama’s extending operation. Opuscula Math.35, 665–688 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Romano S.: 4-Dimensional Frobenius manifolds and Painlevé VI. Math. Ann.360(3), 715–751 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sabbah, C.: Isomonodromic Deformations and Frobenius Manifolds. An Introduction. Universitext. Springer, BerlinGoogle Scholar
  35. 35.
    Saito, K.: On a linear structure of the quotient variety by a finite reflexion group, Preprint RIMS-288 (1979), vol. 29, pp. 535–579. Publications RIMS, Kyoto University (1993)Google Scholar
  36. 36.
    Saito K., Yano T., Sekiguchi J.: On a certain generator system of the ring of invariants of a finite reflection group. Comm. Algebra8, 373–408 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Suzuki, T.: Six-dimensional Painlevé systems and their particular solutions in terms of rigid systems. J. Math. Phys. 55(10), 102902, 30 pp. (2014)Google Scholar
  38. 38.
    Yamakawa D.: Middle convolution and Harnad duality. Math. Ann.349, 215–262 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yokoyama T.: Construction of systems of differential equations of Okubo normal form with rigid monodromy. Math. Nachr.279, 327–348 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Mathematics, College of Science and EngineeringAoyama Gakuin UniversitySagamihara-shiJapan
  2. 2.Department of Mathematical Sciences, Faculty of ScienceUniversity of the RyukyusNishihara-choJapan

Personalised recommendations