Advertisement

Unitarity of the Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, I

Article
  • 17 Downloads

Abstract

This is the first part in a two-part series of papers constructing a unitary structure for the modular tensor category (MTC) associated to a unitary rational vertex operator algebra (VOA). Given a rational VOA, we know that its MTC is constructed using the (finite dimensional) vector spaces of intertwining operators of this VOA. Moreover, the tensor-categorical structures can be described by the monodromy behaviors of the intertwining operators. Thus, constructing a unitary structure for the MTC of a unitary rational VOA amounts to defining an inner product on each (finite dimensional) vector space of intertwining operators, and showing that the monodromy matrices of the intertwining operators (e.g. braiding matrices, fusion matrices) are unitary under these inner products. In this paper, we develop necessary tools and techniques for constructing our unitary structures. This includes giving a systematic treatment of one of the most important functional analytic properties of the intertwining operators: the energy bounds condition. On the one side, we give some useful criteria for proving the energy bounds condition of intertwining operators. On the other side, we show that energy bounded intertwining operators can be smeared to give rise to (unbounded) closed operators. We prove that the (well-known) braid relations and adjoint relations for unsmeared intertwining operators have the corresponding smeared versions. We also give criteria on the strong commutativity between smeared intertwining operators and smeared vertex operators localized in disjoint open intervals of S1 (the strong intertwining property). Besides investigating the energy bounds condition, we also study certain genus 0 geometric properties of intertwining operators. Most importantly, we prove the convergence of certain mixed products-iterations of intertwining operators. Many useful braid and fusion relations will also be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank Professor Vaughan Jones. This paper, as well as the second half of the series, cannot be finished without his constant support, guidance, and encouragement. The author was supported by NSF grant DMS-1362138.

References

  1. BK01.
    Bakalov, B., Kirillov, A.A.: Lectures on Tensor Categories and Modular Functors, vol. 21. American Mathematical Society, Providence (2001)Google Scholar
  2. BS90.
    Buchholz D., Schulz-Mirbach H.: Haag duality in conformal quantum field theory. Rev. Math. Phys. 2(01), 105–125 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. CKLW15.
    Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back (2015). arXiv preprint arXiv:1503.01260
  4. CKM17.
    Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions (2017). arXiv preprint arXiv:1705.05017
  5. Con80.
    Connes A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2), 153–164 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. DHR71.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics I. Commun. Math. Phys. 23(3), 199–230 (1971)ADSMathSciNetCrossRefGoogle Scholar
  7. DL14.
    Dong C., Lin X.: Unitary vertex operator algebras. J. Algebra 397, 252–277 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. EGNO04.
    Etingof P.I., Gelaki S., Nikshych D., Ostrik V.: Tensor Categories, vol 205. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar
  9. FB04.
    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves (No. 88), 2nd edn. American Mathematical Socirty, Providence (2004)Google Scholar
  10. FHL93.
    Frenkel, I., Huang, Y.Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, vol. 494. American Mathematical Society, Providence (1993)Google Scholar
  11. FL74.
    Faris W.G., Lavine R.B.: Commutators and self-adjointness of Hamiltonian operators. Commun. Math. Phys. 35(1), 39–48 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. FLM89.
    Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster, vol 134. Academic Press, London (1989)zbMATHGoogle Scholar
  13. FRS89.
    Fredenhagen K., Rehren K.H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras. Commun. Math. Phys. 125(2), 201–226 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Gal12.
    Galindo, C.: On braided and ribbon unitary fusion categories (2012). arXiv preprint arXiv:1209.2022
  15. GJ12.
    Glimm J., Jaffe A.: Quantum Physics: A Functional Integral Point of View. Springer, Berlin (2012)zbMATHGoogle Scholar
  16. GW84.
    Goodman, R., Wallach, N.R.: Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. Energy 3, 3 (1984)Google Scholar
  17. HK07.
    Huang Y.Z., Kong L.: Full field algebras. Commun. Math. Phys. 272(2), 345–396 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. HK10.
    Huang Y.Z., Kong L.: Modular invariance for conformal full field algebras. Trans. Am. Math. Soc. 362(6), 3027–3067 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. HKL15.
    Huang Y.Z., Kirillov A., Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. HL94.
    Huang, Y.Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. Lie Theory and Geometry, in honor of Bertram Kostant, pp. 349–383 (1994)Google Scholar
  21. HL95a.
    Huang Y.Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Mathematica 1(4), 699 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. HL95b.
    Huang Y.Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Mathematica 1(4), 757 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. HL95c.
    Huang Y.Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Algebra 100(1-3), 141–171 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. HL13.
    Huang Y.Z., Lepowsky J.: Tensor categories and the mathematics of rational and logarithmic conformal field theory. J. Phys. A: Math. Theor. 46(49), 494009 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. HLZ11.
    Huang, Y.Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra (2011). arXiv preprint arXiv:1110.1931
  26. Hua95.
    Huang Y.Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Algebra 100(1-3), 173–216 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Hua05a.
    Huang Y.Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7(03), 375–400 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hua05b.
    Huang Y.Z.: Differential equations, duality and modular invariance. Commun. Contemp. Math. 7(05), 649–706 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Hua08a.
    Huang Y.Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10(01), 103–154 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Hua08b.
    Huang Y.Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10(supp01), 871–911 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. KLM01.
    Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219(3), 631–669 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. Kac98.
    Kac, V.G.: Vertex Algebras for Beginners (No. 10). American Mathematical Society, Providence (1998)Google Scholar
  33. Kaw15.
    Kawahigashi Y.: Conformal field theory, tensor categories and operator algebras. J. Phys. A: Math. Theor. 48(30), 303001 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Kong06.
    Kong, L.: Full field algebras, operads and tensor categories (2006). arXiv preprint arXiv:math/0603065
  35. Kong08.
    Kong L.: Cardy condition for open–closed field algebras. Commun. Math. Phys. 283(1), 25–92 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. LL12.
    Lepowsky J., Li H.: Introduction to Vertex Operator Algebras and Their Representations, vol 227. Springer, Berlin (2012)Google Scholar
  37. MS88.
    Moore G., Seiberg N.: Polynomial equations for rational conformal field theories. Phys. Lett. B 212(4), 451–460 (1988)ADSMathSciNetCrossRefGoogle Scholar
  38. MS89.
    Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123(2), 177–254 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. MS90.
    Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry and Topology, pp. 263–361. Springer, Boston (1990)Google Scholar
  40. Muk10.
    Mukhopadhyay, S.: Decomposition of conformal blocks (Doctoral dissertation, Masters thesis, University of North Carolina at Chapel Hill) (2010)Google Scholar
  41. Nel59.
    Nelson, E.: Analytic vectors. Ann. Math. 572–615 (1959)Google Scholar
  42. Neu16.
    Von Neumann, J.: Functional Operators (AM-22), Volume 2: The Geometry of Orthogonal Spaces(AM-22), vol. 2. Princeton University Press, Princeton (2016)Google Scholar
  43. OS73.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31(2), 83–112 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. Seg88.
    Segal, G.B.: The definition of conformal field theory. In: Differential Geometrical Methods in Theoretical Physics, pp. 165–171. Springer, Dordrecht (1988)Google Scholar
  45. TL99.
    Toledano-Laredo V.: Integrating unitary representations of infinite-dimensional Lie groups. J. Funct. Anal. 161(2), 478–508 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  46. TL04.
    Toledano-Laredo, V.: Fusion of positive energy representations of Lspin (2n) (2004). arXiv preprint arXiv:math/0409044
  47. Tur16.
    Turaev VG (2016) Quantum invariants of Knots and 3-manifolds, vol. 18. Walter de Gruyter GmbH & Co KGGoogle Scholar
  48. Ueno08.
    Ueno, K.: Conformal Field Theory with Gauge Symmetry, vol. 24. American Mathematical Society, Providence (2008)Google Scholar
  49. Was98.
    Wassermann A.: Operator algebras and conformal field theory III. Fusion positive energy representations of LSU (N) using bounded operators. Invent. Mathematicae 133(3), 467–538 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations