Advertisement

The Kernel of the Rarita–Schwinger Operator on Riemannian Spin Manifolds

  • Yasushi Homma
  • Uwe SemmelmannEmail author
Article
  • 5 Downloads

Abstract

We study the Rarita–Schwinger operator on compact Riemannian spin manifolds. In particular, we find examples of compact Einstein manifolds with positive scalar curvature where the Rarita–Schwinger operator has a non-trivial kernel. For positive quaternion Kähler manifolds and symmetric spaces with spin structure we give a complete classification of manifolds admitting Rarita–Schwinger fields. In the case of Calabi–Yau, hyperkähler, G2 and Spin(7) manifolds we find an identification of the kernel of the Rarita–Schwinger operator with certain spaces of harmonic forms. We also give a classification of compact irreducible spin manifolds admitting parallel Rarita–Schwinger fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Anand Dessai for several helpful comments and for his interest in our work. We also thank the anonymous referee for helpful suggestions. The first author was partially supported by JSPS KAKENHI Grant Number JP15K04858. Both authors were partially supported by the DAAD-Waseda University Partnership Programme.

References

  1. 1.
    Alvarez-Gaume L., Witten E.: Gravitational anomalies. Nucl. Phys. B 234(2), 269–330 (1984)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Atiyah M.F., Singer I.M.: The index of elliptic operators. III. Ann. Math. (2) 87, 546–604 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Branson T., Hijazi O.: Bochner–Weitzenböck formulas associated with the Rarita–Schwinger operator. Int. J. Math. 13(2), 137–182 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Brooks R.: The \({\hat{A}}\)-genus of complex hypersurfaces and complete intersections. Proc. Am. Math. Soc. 87(3), 528–532 (1983)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bures J., Sommen F., Soucek V., Van Lancker P.: Rarita–Schwinger type operators in Clifford analysis. J. Funct. Anal. 185(2), 425–455 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bures J., Sommen F., Soucek V., Van Lancker P.: Symmetric analogues of Rarita–Schwinger equations. Ann. Glob. Anal. Geom. 21(3), 215–240 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cahen M., Gutt S.: Spin structures on compact simply connected Riemannian symmetric spaces. Simon Stevin 62, 209–242 (1988)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Conti D., Madsen T.B.: Harmonic structures and intrinsic torsion. Transform. Gr. 20(3), 699–723 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Conti, D., Madsen, T.B., Salamon, S.: Quaternionic geometry in dimension eight. In: Andersen, J.E., Dancer, A., Garcia-Prada, G. (eds.) A Festschrift in Honor of Nigel Hitchin. Geometry and Physis, Vol. I. Oxford University Press, UK (2016)Google Scholar
  10. 10.
    Degeratu, A., Wendland, K.: Friendly giant meets pointlike instantons? On a new conjecture by John McKay. In: Moonshine: The First Quarter Century and Beyond. London Mathematical Society. Lecture Note Series, vol. 372, pp. 55–127. Cambridge University Press, Cambridge (2010)Google Scholar
  11. 11.
    Dessai A.: Spin c-manifolds with Pin(2)-action. Math. Ann. 315(4), 511–528 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dessai A.: Obstructions to positive curvature and symmetry. Adv. Math. 210(2), 560–577 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gadea, P.M., Gonzalez-Davila, J.C., Oubina, J.A.: Homogeneous spin Riemannian manifolds with the simplest Dirac operator. Adv. Geom. 18(3), 289–302 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hirzebruch, F.: Mannigfaltigkeiten und Modulformen, Jahresberichte der DMV (1990)Google Scholar
  15. 15.
    Hirzebruch F.: Topological Methods in Algebraic Geometry, Die Grundlehren der Mathematischen Wissenschaften, vol. 131. Springer, New York (1966)Google Scholar
  16. 16.
    Hirzebruch F., Slodowy P.: Elliptic genera, involutions, and homogeneous spin manifolds. Geom. Dedicata 35(1–3), 309–343 (1990)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hirzebruch, F., Berger, T., Jung, R.: Manifolds and Modular Forms, With Appendices by Nils–Peter Skoruppa and by Paul Baum. Aspects of Mathematics, vol. 20. Friedr. Vieweg & Sohn, Braunschweig (1992)Google Scholar
  18. 18.
    Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000). Contemporary Mathematics, vol. 288, pp. 70–89. American Mathematical Society, Providence (2001)Google Scholar
  19. 19.
    Homma Y.: Estimating the eigenvalues on quaternionic Kähler manifolds. Int. J. Math. 17(6), 665–691 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Homma Y.: Twisted Dirac operators and generalized gradients. Ann. Global Anal. 50(2), 101–127 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Joyce D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)Google Scholar
  22. 22.
    Julia B.: Systeme lineaire associe aux equations d’Einstein. C. R. Acad. Sci. Paris Ser. II Mec. Phys. Chim. Sci. Univers Sci. Terre 295(2), 113–116 (1982)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kim E.C.: The \({\hat{A}}\)-genus and symmetry of the Dirac spectrum on Riemannian product manifolds. Differ. Geom. Appl. 25(3), 309–321 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lawson H.B., Michelsohn M.-L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)Google Scholar
  25. 25.
    Mason L.J., Nicolas J.P.: Global results for the Rarita–Schwinger equations and Einstein vacuum equations. Proc. Lond. Math. Soc. (3) 79(3), 694–720 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Moroianu A., Semmelmann U.: The Hermitian Laplace operator on nearly Kähler manifolds. Commun. Math. Phys. 294, 251–272 (2010)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Nadel A.M.: Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature. Proc. Nat. Acad. Sci. U.S.A. 86(19), 7299–7300 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ochanine, S.: Signature modulo 16, invariants de Kervaire generalises et nombres caracteristiques dans la K-theorie reelle. Memoirs of the Mathematical Society of France (N.S.), no. 5 (1980/1981)Google Scholar
  29. 29.
    Penrose, R.: Twistors as spin 3/2 charges. In: Gravitation and Modern Cosmology, pp. 129–137 (Erice, 1990)Google Scholar
  30. 30.
    Poon Y.S., Salamon S.M.: Quaternionic Kähler 8-manifolds with positive scalar curvature. J. Diff. Geom. 33(2), 363–378 (1991)CrossRefzbMATHGoogle Scholar
  31. 31.
    Rarita W., Schwinger J.: On a theory of particles with half-integral spin. Phys. Rev. (2) 60, 61 (1941)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Salamon S.M.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Salamon, S.: Almost parallel structures. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray (Bilbao, 2000). Contemporary Mathematics, vol. 288, pp. 162–181. American Mathematical Society, Providence (2001)Google Scholar
  34. 34.
    Semmelmann U., Weingart G.: Vanishing theorems for quaternionic Kähler manifolds. J. Reine Angew. Math. 544, 111–132 (2002)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Semmelmann, U., Weingart, G.: The Standard Laplace Operator. Manuscripta Math. 158(1–2), 273–293 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Semmelmann, U.: Kählersche Killingspinoren und komplexe Kontaktstrukturen, Ph.D. thesis, Humboldt Universität zu Berlin (1995)Google Scholar
  37. 37.
    Strese H.: Über den Dirac-Operator auf Grassmann–Mannigfaltigkeiten. Math. Nachr. 98, 53–59 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Swann A.: Hyper-Kähler and quaternionic Kähler geometry. Math. Ann. 289(3), 421–450 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tian G.: On Kähler–Einstein metrics on certain Kähler manifolds with C 1(M) >  0. Invent. Math. 89(2), 225–246 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang M.Y.: Parallel spinors and parallel forms. Ann. Glob. Anal. Geom. 7(1), 59–68 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wang M.Y.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40(3), 815–844 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Witt F.: Special metrics and triality. Adv. Math. 219(6), 1972–2005 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Witten, E.: Fermion quantum numbers in Kaluza–Klein theory, Shelter Island II (Shelter Island, N.Y., 1983), pp. 227–277. MIT Press, Cambridge (1985)Google Scholar
  44. 44.
    Witten E.: Global gravitational anomalies. Commun. Math. Phys. 100(2), 197–229 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Witten E.: Elliptic genera and quantum field theory. Commun. Math. Phys. 109(4), 525–536 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, School of Science and EngineeringWaseda UniversityTokyoJapan
  2. 2.Institut für Geometrie und Topologie, Fachbereich MathematikUniversität StuttgartStuttgartGermany

Personalised recommendations