Abstract
We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for \({\mathcal{E}_n}\)-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
Our collaboration began at a workshop in Glanon in 2011. We are grateful to people of Glanon for their warm hospitality in hosting this annual workshop, and to Grégory Ginot for inviting us to participate in it. We have learned an enormous amount from Jacob Lurie; we use, in particular, his opuses [Lu1] and [Lu2] throughout. We thank Greg Arone for several very helpful conversations on Goodwillie calculus. JF thanks Kevin Costello for offering many insights in many conversations over the years. We thank the referees for their informed and detailed readings, which have significantly improved this paper.
References
- AK.Ahearn S., Kuhn N.: Product and other fine structure in polynomial resolutions of mapping spaces. Algebr. Geom. Topol. 2, 591–647 (2002)MathSciNetzbMATHGoogle Scholar
- AF1.Ayala D., Francis J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)MathSciNetzbMATHGoogle Scholar
- AF2.Ayala, D., Francis, J.: Zero-pointed manifolds. Preprint. arXiv:1409.2857
- AFR.Ayala, D., Francis, J., Rozenblyum, N.: A stratified homotopy hypothesis. J. Eur. Math. Soc. arXiv:1502.01713
- AFT1.Ayala D., Francis J., Tanaka H.L.: Local structures on stratified spaces. Adv. Math. 307, 903–1028 (2017)MathSciNetzbMATHGoogle Scholar
- AFT2.Ayala D., Francis J., Tanaka H.L.: Factorization homology of stratified spaces. Selecta Math. (N.S.) 23(1), 293–362 (2017)MathSciNetzbMATHGoogle Scholar
- BaD.Baez J., Dolan J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)ADSMathSciNetzbMATHGoogle Scholar
- BeD.Beilinson A., Drinfeld V.: Chiral algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI (2004)zbMATHGoogle Scholar
- BFN.Ben-Zvi D., Francis J., Nadler D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)MathSciNetzbMATHGoogle Scholar
- BoV.Boardman, J.M., Vogt, R.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer, Berlin (1973)Google Scholar
- Bo.Bödigheimer, C.-F.: Stable splittings of mapping spaces. Algebraic topology (Seattle, Wash., 1985), 174–187, Lecture Notes in Math., 1286, Springer, Berlin (1987)Google Scholar
- BuV.Burghelea, D., Vigu-Poirrier, M.: Cyclic homology of commutative algebras. I. Algebraic topology rational homotopy (Louvain-la-Neuve, 1986), 5172, Lecture Notes in Math., 1318, Springer, Berlin, (1988)Google Scholar
- Ca.Campbell, J.: Derived Koszul duality and topological Hochschild homology. Preprint. arXiv:1401.5147
- Co.Costello K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, 170. American Mathematical Society, Providence, RI (2011)Google Scholar
- CG.Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Preprint http://www.math.northwestern.edu/~costello/renormalization
- FT1.Feigin, B., Tsygan, B.: Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen. 19(2), 5262, 96 (1985)Google Scholar
- FT2.Feigin, B., Tsygan, B.: Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras. K-theory, arithmetic and geometry (Moscow, 1984–1986), 210–239, Lecture Notes in Math., 1289, Springer, Berlin (1987)Google Scholar
- Fr1.Francis, J.: Derived algebraic geometry over \({\mathcal{E}_n}\)-rings. Thesis (PhD)—Massachusetts Institute of Technology (2008)Google Scholar
- Fr2.Francis J.: The tangent complex and Hochschild cohomology of \({\mathcal{E}_n}\)-rings. Compos. Math. 149(3), 430–480 (2013)MathSciNetzbMATHGoogle Scholar
- FG.Francis J., Gaitsgory D.: Chiral Koszul duality. Selecta Math. (N.S.) 18(1), 27–87 (2012)MathSciNetzbMATHGoogle Scholar
- FN.Frölicher A., Nijenhuis A.: A theorem on stability of complex structures. Proc. Nat. Acad. Sci. U.S.A. 43, 239–241 (1957)ADSMathSciNetzbMATHGoogle Scholar
- FM.Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. of Math. (2) 139(1), 183–225 (1994)MathSciNetzbMATHGoogle Scholar
- GL.Gaitsgory, D, Lurie, J: Weil’s Conjecture for Function Fields. Preprint http://www.math.harvard.edu/~lurie/
- Ger.Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. (2) 79, 59–103 (1964)MathSciNetzbMATHGoogle Scholar
- GS.Gerstenhaber M., Schack S: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48(3), 229–247 (1987)MathSciNetzbMATHGoogle Scholar
- Get.Getzler E.: Lie theory for nilpotent L\({_\infty}\)-algebras. Ann. of Math. (2) 170, 271–301 (2009)MathSciNetzbMATHGoogle Scholar
- GeK.Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA (1995)Google Scholar
- GiK.Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetzbMATHGoogle Scholar
- GM1.Goldman W., Millson J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67, 43–96 (1988)zbMATHGoogle Scholar
- GM2.Goldman W., Millson J.: The homotopy invariance of the Kuranishi space. Illinois J. Math. 34(2), 337–367 (1990)MathSciNetzbMATHGoogle Scholar
- Go.Goodwillie T.: Calculus. III. Taylor series. Geom. Topol. 7, 645–711 (2003)MathSciNetzbMATHGoogle Scholar
- Hi1.Hinich, V: Descent of Deligne groupoids. Int. Math. Res. Notices (5):223–239 (1997)Google Scholar
- Hi2.Hinich V.: Formal stacks as dg-coalgebras. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)MathSciNetzbMATHGoogle Scholar
- HS1.Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. I.. Algebra Colloq 4(2), 213–240 (1997)MathSciNetzbMATHGoogle Scholar
- HS2.Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. II. Algebra Colloq. 4(3), 291–316 (1997)MathSciNetzbMATHGoogle Scholar
- Jo.Joyal André: Quasi-categories and Kan complexes. Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175(1–3), 207–222 (2002)MathSciNetGoogle Scholar
- Ka.Kallel S.: Spaces of particles on manifolds and generalized Poincaré dualities. Q. J. Math. 52(1), 45–70 (2001)MathSciNetzbMATHGoogle Scholar
- Kn.Knudsen, B.: Higher enveloping algebras. Preprint (2017)Google Scholar
- KS.Kodaira K., Spencer D.: On deformations of complex analytic structures. I, II. Ann. of Math. (2) 67, 328–466 (1958)MathSciNetzbMATHGoogle Scholar
- kuh1.Kuhn, N.: Goodwillie towers and chromatic homotopy: an overview. In: Proceedings of the Nishida Fest (Kinosaki 2003), 245–279, Geom. Topol. Monogr., 10, Geom. Topol. Publ., Coventry (2007)Google Scholar
- kuh2.Kuhn N.: Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math. 201(2), 318–378 (2006)MathSciNetzbMATHGoogle Scholar
- kur.Kuranishi M.: On the locally complete families of complex analytic structures. Ann. of Math. (2) 75, 536–577 (1962)MathSciNetzbMATHGoogle Scholar
- Lo.Loday J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)ADSMathSciNetzbMATHGoogle Scholar
- Lu1.Lurie, J.: Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ (2009)Google Scholar
- Lu2.Lurie, J.: Higher algebra. Preprint dated September 14 (2014). http://www.math.harvard.edu/~lurie/
- Lu3.Lurie, J.: On the classification of topological field theories. Current developments in mathematics, 2008, 129–280. Int. Press, Somerville, MA, (2009)Google Scholar
- Lu4.Lurie, J.: Derived algebraic geometry X: Formal moduli problems. Preprint http://www.math.harvard.edu/~lurie/
- Mat.Matsuoka, T.: Descent and the Koszul duality for locally constant factorisation algebras. Thesis (Ph.D.)—Northwestern University. (2014)Google Scholar
- May.May, J.P.: The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271, pp. viii+175. Springer, Berlin (1972).Google Scholar
- MM.Milnor J., Moore J.: On the structure of Hopf algebras. Ann. of Math. (2) 81, 211–264 (1965)MathSciNetzbMATHGoogle Scholar
- Mc.McDuff D.: Configuration spaces of positive and negative particles.. Topology 14, 91–107 (1975)MathSciNetzbMATHGoogle Scholar
- Mo.Moore, J: Differential Homological Algebra. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 335–339. Gauthier-Villars, Paris (1971)Google Scholar
- NR.Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1–29 (1966)MathSciNetzbMATHGoogle Scholar
- Pr.Priddy S.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MathSciNetzbMATHGoogle Scholar
- Quill.Quillen D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)MathSciNetzbMATHGoogle Scholar
- Sa.Salvatore, P.: Configuration spaces with summable labels. Cohomological Methods in Homotopy Theory (Bellaterra, 1998), 375–395, Progr. Math., 196, Birkhäuser, Basel (2001)Google Scholar
- Sc.Schlessinger M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)MathSciNetzbMATHGoogle Scholar
- SS.Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2-3), 313–322 (1985)MathSciNetzbMATHGoogle Scholar
- Se1.Segal G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)ADSMathSciNetzbMATHGoogle Scholar
- Se2.Segal G.: The topology of spaces of rational functions. Acta. Math. 143, 39–72 (1979)MathSciNetzbMATHGoogle Scholar
- Se3.Segal, G.: The definition of conformal field theory. Topology, Geometry and Quantum Field Theory, 421–577, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge (2004)Google Scholar
- Se4.Segal G.: Locality of holomorphic bundles, and locality in quantum field theory. The many facets of geometry, 164–176. Oxford Univ. Press, Oxford (2010)Google Scholar
- Si.Sinha D.: Koszul duality in algebraic topology. J. Homotopy Relat. Struct. 8(1), 1–12 (2013)ADSMathSciNetzbMATHGoogle Scholar
- Su.Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)MathSciNetzbMATHGoogle Scholar
- TV.Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902) (2008)Google Scholar
- We.Weiss M.: Embeddings from the point of view of immersion theory. I. Geom. Topol. 3, 67–101 (1999)MathSciNetzbMATHGoogle Scholar