Advertisement

Poincaré/Koszul Duality

  • David Ayala
  • John FrancisEmail author
Article
  • 12 Downloads

Abstract

We prove a duality for factorization homology which generalizes both usual Poincaré duality for manifolds and Koszul duality for \({\mathcal{E}_n}\)-algebras. The duality has application to the Hochschild homology of associative algebras and enveloping algebras of Lie algebras. We interpret our result at the level of topological quantum field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Our collaboration began at a workshop in Glanon in 2011. We are grateful to people of Glanon for their warm hospitality in hosting this annual workshop, and to Grégory Ginot for inviting us to participate in it. We have learned an enormous amount from Jacob Lurie; we use, in particular, his opuses [Lu1] and [Lu2] throughout. We thank Greg Arone for several very helpful conversations on Goodwillie calculus. JF thanks Kevin Costello for offering many insights in many conversations over the years. We thank the referees for their informed and detailed readings, which have significantly improved this paper.

References

  1. AK.
    Ahearn S., Kuhn N.: Product and other fine structure in polynomial resolutions of mapping spaces. Algebr. Geom. Topol. 2, 591–647 (2002)MathSciNetzbMATHGoogle Scholar
  2. AF1.
    Ayala D., Francis J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)MathSciNetzbMATHGoogle Scholar
  3. AF2.
    Ayala, D., Francis, J.: Zero-pointed manifolds. Preprint. arXiv:1409.2857
  4. AFR.
    Ayala, D., Francis, J., Rozenblyum, N.: A stratified homotopy hypothesis. J. Eur. Math. Soc. arXiv:1502.01713
  5. AFT1.
    Ayala D., Francis J., Tanaka H.L.: Local structures on stratified spaces. Adv. Math. 307, 903–1028 (2017)MathSciNetzbMATHGoogle Scholar
  6. AFT2.
    Ayala D., Francis J., Tanaka H.L.: Factorization homology of stratified spaces. Selecta Math. (N.S.) 23(1), 293–362 (2017)MathSciNetzbMATHGoogle Scholar
  7. BaD.
    Baez J., Dolan J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)ADSMathSciNetzbMATHGoogle Scholar
  8. BeD.
    Beilinson A., Drinfeld V.: Chiral algebras. American Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI (2004)zbMATHGoogle Scholar
  9. BFN.
    Ben-Zvi D., Francis J., Nadler D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)MathSciNetzbMATHGoogle Scholar
  10. BoV.
    Boardman, J.M., Vogt, R.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol. 347. Springer, Berlin (1973)Google Scholar
  11. Bo.
    Bödigheimer, C.-F.: Stable splittings of mapping spaces. Algebraic topology (Seattle, Wash., 1985), 174–187, Lecture Notes in Math., 1286, Springer, Berlin (1987)Google Scholar
  12. BuV.
    Burghelea, D., Vigu-Poirrier, M.: Cyclic homology of commutative algebras. I. Algebraic topology rational homotopy (Louvain-la-Neuve, 1986), 5172, Lecture Notes in Math., 1318, Springer, Berlin, (1988)Google Scholar
  13. Ca.
    Campbell, J.: Derived Koszul duality and topological Hochschild homology. Preprint. arXiv:1401.5147
  14. Co.
    Costello K.: Renormalization and effective field theory. Mathematical Surveys and Monographs, 170. American Mathematical Society, Providence, RI (2011)Google Scholar
  15. CG.
    Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Preprint http://www.math.northwestern.edu/~costello/renormalization
  16. FT1.
    Feigin, B., Tsygan, B.: Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen. 19(2), 5262, 96 (1985)Google Scholar
  17. FT2.
    Feigin, B., Tsygan, B.: Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras. K-theory, arithmetic and geometry (Moscow, 1984–1986), 210–239, Lecture Notes in Math., 1289, Springer, Berlin (1987)Google Scholar
  18. Fr1.
    Francis, J.: Derived algebraic geometry over \({\mathcal{E}_n}\)-rings. Thesis (PhD)—Massachusetts Institute of Technology (2008)Google Scholar
  19. Fr2.
    Francis J.: The tangent complex and Hochschild cohomology of \({\mathcal{E}_n}\)-rings. Compos. Math. 149(3), 430–480 (2013)MathSciNetzbMATHGoogle Scholar
  20. FG.
    Francis J., Gaitsgory D.: Chiral Koszul duality. Selecta Math. (N.S.) 18(1), 27–87 (2012)MathSciNetzbMATHGoogle Scholar
  21. FN.
    Frölicher A., Nijenhuis A.: A theorem on stability of complex structures. Proc. Nat. Acad. Sci. U.S.A. 43, 239–241 (1957)ADSMathSciNetzbMATHGoogle Scholar
  22. FM.
    Fulton W., MacPherson R.: A compactification of configuration spaces. Ann. of Math. (2) 139(1), 183–225 (1994)MathSciNetzbMATHGoogle Scholar
  23. GL.
    Gaitsgory, D, Lurie, J: Weil’s Conjecture for Function Fields. Preprint http://www.math.harvard.edu/~lurie/
  24. Ger.
    Gerstenhaber M.: On the deformation of rings and algebras. Ann. of Math. (2) 79, 59–103 (1964)MathSciNetzbMATHGoogle Scholar
  25. GS.
    Gerstenhaber M., Schack S: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48(3), 229–247 (1987)MathSciNetzbMATHGoogle Scholar
  26. Get.
    Getzler E.: Lie theory for nilpotent L\({_\infty}\)-algebras. Ann. of Math. (2) 170, 271–301 (2009)MathSciNetzbMATHGoogle Scholar
  27. GeK.
    Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. Geometry, topology, & physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA (1995)Google Scholar
  28. GiK.
    Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetzbMATHGoogle Scholar
  29. GM1.
    Goldman W., Millson J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67, 43–96 (1988)zbMATHGoogle Scholar
  30. GM2.
    Goldman W., Millson J.: The homotopy invariance of the Kuranishi space. Illinois J. Math. 34(2), 337–367 (1990)MathSciNetzbMATHGoogle Scholar
  31. Go.
    Goodwillie T.: Calculus. III. Taylor series. Geom. Topol. 7, 645–711 (2003)MathSciNetzbMATHGoogle Scholar
  32. Hi1.
    Hinich, V: Descent of Deligne groupoids. Int. Math. Res. Notices (5):223–239 (1997)Google Scholar
  33. Hi2.
    Hinich V.: Formal stacks as dg-coalgebras. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)MathSciNetzbMATHGoogle Scholar
  34. HS1.
    Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. I.. Algebra Colloq 4(2), 213–240 (1997)MathSciNetzbMATHGoogle Scholar
  35. HS2.
    Hinich V., Schechtman V.: Deformation theory and Lie algebra homology. II. Algebra Colloq. 4(3), 291–316 (1997)MathSciNetzbMATHGoogle Scholar
  36. Jo.
    Joyal André: Quasi-categories and Kan complexes. Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175(1–3), 207–222 (2002)MathSciNetGoogle Scholar
  37. Ka.
    Kallel S.: Spaces of particles on manifolds and generalized Poincaré dualities. Q. J. Math. 52(1), 45–70 (2001)MathSciNetzbMATHGoogle Scholar
  38. Kn.
    Knudsen, B.: Higher enveloping algebras. Preprint (2017)Google Scholar
  39. KS.
    Kodaira K., Spencer D.: On deformations of complex analytic structures. I, II. Ann. of Math. (2) 67, 328–466 (1958)MathSciNetzbMATHGoogle Scholar
  40. kuh1.
    Kuhn, N.: Goodwillie towers and chromatic homotopy: an overview. In: Proceedings of the Nishida Fest (Kinosaki 2003), 245–279, Geom. Topol. Monogr., 10, Geom. Topol. Publ., Coventry (2007)Google Scholar
  41. kuh2.
    Kuhn N.: Localization of André–Quillen–Goodwillie towers, and the periodic homology of infinite loopspaces. Adv. Math. 201(2), 318–378 (2006)MathSciNetzbMATHGoogle Scholar
  42. kur.
    Kuranishi M.: On the locally complete families of complex analytic structures. Ann. of Math. (2) 75, 536–577 (1962)MathSciNetzbMATHGoogle Scholar
  43. Lo.
    Loday J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)ADSMathSciNetzbMATHGoogle Scholar
  44. Lu1.
    Lurie, J.: Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ (2009)Google Scholar
  45. Lu2.
    Lurie, J.: Higher algebra. Preprint dated September 14 (2014). http://www.math.harvard.edu/~lurie/
  46. Lu3.
    Lurie, J.: On the classification of topological field theories. Current developments in mathematics, 2008, 129–280. Int. Press, Somerville, MA, (2009)Google Scholar
  47. Lu4.
    Lurie, J.: Derived algebraic geometry X: Formal moduli problems. Preprint http://www.math.harvard.edu/~lurie/
  48. Mat.
    Matsuoka, T.: Descent and the Koszul duality for locally constant factorisation algebras. Thesis (Ph.D.)—Northwestern University. (2014)Google Scholar
  49. May.
    May, J.P.: The geometry of iterated loop spaces. Lectures Notes in Mathematics, Vol. 271, pp. viii+175. Springer, Berlin (1972).Google Scholar
  50. MM.
    Milnor J., Moore J.: On the structure of Hopf algebras. Ann. of Math. (2) 81, 211–264 (1965)MathSciNetzbMATHGoogle Scholar
  51. Mc.
    McDuff D.: Configuration spaces of positive and negative particles.. Topology 14, 91–107 (1975)MathSciNetzbMATHGoogle Scholar
  52. Mo.
    Moore, J: Differential Homological Algebra. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 335–339. Gauthier-Villars, Paris (1971)Google Scholar
  53. NR.
    Nijenhuis A., Richardson R.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72, 1–29 (1966)MathSciNetzbMATHGoogle Scholar
  54. Pr.
    Priddy S.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MathSciNetzbMATHGoogle Scholar
  55. Quill.
    Quillen D.: Rational homotopy theory. Ann. of Math. (2) 90, 205–295 (1969)MathSciNetzbMATHGoogle Scholar
  56. Sa.
    Salvatore, P.: Configuration spaces with summable labels. Cohomological Methods in Homotopy Theory (Bellaterra, 1998), 375–395, Progr. Math., 196, Birkhäuser, Basel (2001)Google Scholar
  57. Sc.
    Schlessinger M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)MathSciNetzbMATHGoogle Scholar
  58. SS.
    Schlessinger M., Stasheff J.: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Algebra 38(2-3), 313–322 (1985)MathSciNetzbMATHGoogle Scholar
  59. Se1.
    Segal G.: Configuration-spaces and iterated loop-spaces. Invent. Math. 21, 213–221 (1973)ADSMathSciNetzbMATHGoogle Scholar
  60. Se2.
    Segal G.: The topology of spaces of rational functions. Acta. Math. 143, 39–72 (1979)MathSciNetzbMATHGoogle Scholar
  61. Se3.
    Segal, G.: The definition of conformal field theory. Topology, Geometry and Quantum Field Theory, 421–577, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge (2004)Google Scholar
  62. Se4.
    Segal G.: Locality of holomorphic bundles, and locality in quantum field theory. The many facets of geometry, 164–176. Oxford Univ. Press, Oxford (2010)Google Scholar
  63. Si.
    Sinha D.: Koszul duality in algebraic topology. J. Homotopy Relat. Struct. 8(1), 1–12 (2013)ADSMathSciNetzbMATHGoogle Scholar
  64. Su.
    Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1977)MathSciNetzbMATHGoogle Scholar
  65. TV.
    Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902) (2008)Google Scholar
  66. We.
    Weiss M.: Embeddings from the point of view of immersion theory. I. Geom. Topol. 3, 67–101 (1999)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsMontana State UniversityBozemanUSA
  2. 2.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations