Local Well-Posedness for Boltzmann’s Equation and the Boltzmann Hierarchy via Wigner Transform

  • Thomas Chen
  • Ryan Denlinger
  • Nataša PavlovićEmail author


We use the dispersive properties of the linear Schrödinger equation to prove local well-posedness results for the Boltzmann equation and the related Boltzmann hierarchy, set in the spatial domain \({\mathbb{R}^d}\) for \({d\geq 2}\) . The proofs are based on the use of the (inverse) Wigner transform along with the spacetime Fourier transform. The norms for the initial data f0 are weighted versions of the Sobolev spaces \({L^2_v H^\alpha_x}\) with \({\alpha \in \left( \frac{d-1}{2},\infty\right)}\) . Our main results are local well-posedness for the Boltzmann equation for cutoff Maxwell molecules and hard spheres, as well as local well-posedness for the Boltzmann hierarchy for cutoff Maxwell molecules (but not hard spheres); the latter result holds without any factorization assumption for the initial data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work of T.C. is supported by NSF Grants DMS-1151414 (CAREER),DMS-1262411, and DMS-1716198. R. D. gratefully acknowledges support from a postdoctoral fellowship at the University of Texas at Austin. The work of N.P. is supported by NSF Grant DMS-1516228.


  1. 1.
    Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Global existence and full regularity of the Boltzmann equation without angular cutoff. Commun. Math. Phys. 304(2), 513–581 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: Local existence with mild regularity for the Boltzmann equation. Kinet. Relat. Models 6(4), 1011–1041 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arsenio D.: On the global existence of mild solutions to the Boltzmann equation for small data in L D. Commun. Math. Phys. 302(2), 453–476 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodineau T., Gallagher I., Saint-Raymond L.: From hard spheres dynamics to the Stokes-Fourier equations: an L 2 analysis of the Boltzmann–Grad limit. Ann. PDE 3, 1–2 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cercignani C., Illner R., Pulvirenti M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chen T., Pavlović N.: On the Cauchy problem for focusing and defocusing Gross–Pitaevskii hierarchies. Discrete Contin. Dyn. Syst. A 27(2), 715–739 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Duan R.: On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in \({L^2_\xi (H^N_x)}\) . J. Differ. Equ. 244(12), 3204–3234 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Erdös L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation form a many body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: Hard spheres and short-range potentials. Zur. Lect. Adv. Math. 18, 150 (2014)Google Scholar
  13. 13.
    Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hewitt E., Savage L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaniel S., Shinbrot M.: The Boltzmann equation: I. Uniqueness and local existence. Commun. Math. Phys. 58(1), 65–84 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    King, F.: BBGKY hierarchy for positive potentials, Ph.D. Thesis (1975)Google Scholar
  18. 18.
    Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross–Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169–185 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lanford O.E.: Time evolution of large classical systems. In: Moser J. (eds) Dynamical systems, theory and applications. Lecture notes in Physics, vol. 38. Springer, Berlin, Heidelberg (1975)Google Scholar
  20. 20.
    Pulvirenti M., Simonella S.: The Boltzmann–Grad limit of a hard sphere system: analysis of the correlation error. Invent. Math. 207(3), 1135–1237 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Simonella S., Spohn S.: Book review: from Newton to Boltzmann: hard spheres and short-range potentials, by Isabelle Gallagher, Laure Saint-Raymond and Benjamin Texier. Bull. Am. Math. Soc. 52, 533–538 (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ukai S.: On the existence of global solutions of mixed problem for the non-linear Boltzmann equation. Proc. Jpn. Acad. 50(3), 179–184 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ukai, S., Yang, T.: The Boltzmann equation in the space \({L^2 \cap L^\infty_\beta}\) : global and time-periodic solutions. Anal. Appl. 4(3), 263–310 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations