Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 3, pp 943–970 | Cite as

The Moonshine Anomaly

  • Theo Johnson-FreydEmail author
Article

Abstract

The anomaly for the Monster group \({\mathbb{M}}\) acting on its natural (aka moonshine) representation \({V^\natural}\) is a particular cohomology class \({\omega^\natural \in {\rm H}^3(\mathbb{M},{\rm U}(1))}\) that arises as a conformal field theoretic generalization of the second Chern class of a representation. This paper shows that \({\omega^\natural}\) has order exactly 24 and is not a Chern class. In order to perform this computation, this paper introduces a finite-group version of T-duality, which is used to relate \({\omega^\natural}\) to the anomaly for the Leech lattice CFT.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I discussed substantial portions of this work with David Treumann, who pointed out that \({\omega^\natural}\) might not be a Chern class, and with Marcel Bischoff, who told me a separate conformal-net-theoretic proof of Example 2.1.1 using the main results of [GL96,LX04]. I thank both of them for their time and attention. Leonard Soicher kindly shared with me matrices satisfying his presentation for Co1; these matrices were first computed by Richard Parker and are reproduced in Appendix A. I would also like to thank Lakshya Bhardwaj, Richard Borcherds, Kevin Costello, Davide Gaiotto, Nora Ganter, Andre Henriques, David Jordan, and Alex Weekes for helpful suggestions and discussions, and the referees for their valuable comments. Research at the Perimeter Institute for Theoretical Physics is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

References

  1. ALY17.
    Abe, T., Lam, C.H., Yamada, H.: A remark on \({{{\mathbb{Z} }}_p}\)-orbifold constructions of the moonshine vertex operator algebra. (2017). arXiv:1705.09022
  2. Arl84.
    Arlettaz D.: Chern-Klassen von ganzzahligen und rationalen Darstellungen diskreter Gruppen. Math. Z. 187(1), 49–60 (1984).  https://doi.org/10.1007/BF01163165 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Bal12.
    Balsam, B.: Turaev-Viro theory as an extended TQFT. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), State University of New York at Stony Brook. (2012)Google Scholar
  4. BDH09.
    Bartels, A., Douglas, C.L., Henriques, A.: Conformal nets and local field theory. (2009). arXiv:0912.5307
  5. BDH13.
    Bartels, A., Douglas, C.L., Henriques, A.: Conformal nets III: fusion of defects. (2013). arXiv:1310.8263
  6. BDH15.
    Bartels A., Douglas C.L., Henriques A.: Conformal nets I: coordinate-free nets. Int. Math. Res. Not. IMRN 13, 4975–5052 (2015).  https://doi.org/10.1093/imrn/rnu080 MathSciNetCrossRefzbMATHGoogle Scholar
  7. BDH16.
    Bartels, A., Douglas, C.L., Henriques, A.: Conformal nets IV: the 3-category. (2016). arXiv:1605.00662
  8. BDH17.
    Bartels A., Douglas C.L., Henriques A.: Conformal nets II: conformal blocks. Commun. Math. Phys. 354(1), 393–458 (2017).  https://doi.org/10.1007/s00220-016-2814-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Ben67.
    Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category Seminar, pp. 1–77. Springer, Berlin (1967)Google Scholar
  10. BGK16.
    Bhardwaj, L., Gaiotto, D., Kapustin, A.: State sum constructions of spin-tfts and string net constructions of fermionic phases of matter. (2016). arXiv:1605.01640
  11. Bis12.
    Bischoff, M.: Construction of models in low-dimensional quantum field theory using operator algebraic methods. PhD thesis, Università degli Studi di Roma Tor Vergata (2012). https://math.vanderbilt.edu/bischom/thesis/phd.pdf
  12. BKL15.
    Bischoff M., Kawahigashi Y., Longo R.: Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case. Doc. Math. 20, 1137–1184 (2015) arXiv:1410.8848 MathSciNetzbMATHGoogle Scholar
  13. BT17.
    Bhardwaj, L., Tachikawa, Y.: On finite symmetries and their gauging in two dimensions. (2017). arXiv:1704.02330
  14. CCN+85.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985). Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. ThackrayGoogle Scholar
  15. CdLW16.
    Cheng, M., de Lange, P., Whalen, D.: Generalised umbral Moonshine. (2016). arXiv:1608.07835
  16. CKLW15.
    Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back. (2015). arXiv:1503.01260
  17. CM16.
    Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras. (2016). arXiv:1603.05645
  18. CN79.
    Conway J.H., Norton S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11(3), 308–339 (1979).  https://doi.org/10.1112/blms/11.3.308 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Dav13.
    Davydov, A.: Bogomolov multiplier, double class-preserving automorphisms and modular invariants for orbifolds. (2013). arXiv:1312.7466
  20. DG12.
    Dong C., Griess R.L. Jr: Integral forms in vertex operator algebras which are invariant under finite groups. J. Algebra 365, 184–198 (2012).  https://doi.org/10.1016/j.jalgebra.2012.05.006 arXiv:1201.3411 MathSciNetCrossRefzbMATHGoogle Scholar
  21. DGH98.
    Dong C., Griess R.L., Höhn G. Jr: Framed vertex operator algebras, codes and the Moonshine module. Commun. Math. Phys. 193(2), 407–448 (1998).  https://doi.org/10.1007/s002200050335 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. DH.
    Douglas, C.L., Henriques, A.: Geometric string structures. http://andreghenriques.com/PDF/TringWP.pdf
  23. DH11.
    Douglas, C.L., Henriques, A.G.: Topological modular forms and conformal nets. In: Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. Proc. Sympos. Pure Math., vol. 83, pp. 341–354. American Mathematical Society, Providence (2011).  https://doi.org/10.1090/pspum/083/2742433. arXiv:1103.4187
  24. DM94.
    Dong, C., Mason, G.: The construction of the Moonshine module as a Z p-orbifold. In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992). Contemp. Math., vol. 175, pp. 37–52. American Mathematical Society, Providence (1994).  https://doi.org/10.1090/conm/175/01836
  25. DMC15.
    Duncan John F.R., Mack-Crane S.: The moonshine module for Conway’s group. Forum Math. Sigma 3, e10, 52 (2015).  https://doi.org/10.1017/fms.2015.7 arXiv:1409.3829 MathSciNetzbMATHGoogle Scholar
  26. DMNO13.
    Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013) arXiv:1009.2117 MathSciNetzbMATHGoogle Scholar
  27. DN99.
    Dong, C., Nagatomo, K.: Automorphism groups and twisted modules for lattice vertex operator algebras. In: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998). Contemp. Math., vol. 248, pp. 117–133. American Mathematical Society, Providence (1999). arXiv:math/9808088.  https://doi.org/10.1090/conm/248/03821
  28. DPR90.
    Dijkgraaf, R., Pasquier, V., Roche, P.: Quasi Hopf algebras, group cohomology and orbifold models. Nuclear Phys. B Proc. Suppl. 18B, 60–72 (1991) 1990. Recent advances in field theory (Annecy-le-Vieux, 1990)Google Scholar
  29. Dun07.
    Duncan J.F.: Super-moonshine for Conway’s largest sporadic group. Duke Math. J. 139(2), 255–315 (2007).  https://doi.org/10.1215/S0012-7094-07-13922-X arXiv:math/0502267 MathSciNetCrossRefzbMATHGoogle Scholar
  30. DVVV89.
    Dijkgraaf R., Vafa C., Verlinde E., Verlinde H.: The operator algebra of orbifold models. Commun. Math. Phys. 123(3), 485–526 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. DW90.
    Dijkgraaf R., Witten E.: Topological gauge theories and group cohomology. Commun. Math. Phys. 129(2), 393–429 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. EGNO15.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence. (2015). http://www-math.mit.edu/~etingof/egnobookfinal.pdf.  https://doi.org/10.1090/surv/205
  33. ENO10.
    Etingof, P., Nikshych, D., Ostrik, V.: Fusion categories and homotopy theory. Quantum Topol. 1(3), 209–273 (2010). With an appendix by Ehud Meir.  https://doi.org/10.4171/QT/6. arXiv:0909.3140
  34. ENO11.
    Etingof P., Nikshych D., Ostrik V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226(1), 176–205 (2011).  https://doi.org/10.1016/j.aim.2010.06.009 MathSciNetCrossRefzbMATHGoogle Scholar
  35. FFRS06.
    Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: TF construction of RCFT correlators. V. Proof of modular invariance and factorisation. Theory Appl. Categ. 16(16), 342–433 (2006). arXiv:hep-th/0503194
  36. FLM88.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134. Academic Press Inc., Boston (1988)Google Scholar
  37. FQ93.
    Freed D.S., Quinn F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156(3), 435–472 (1993) arXiv:hep-th/9111004 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. FRS02.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. I. Partition functions. Nuclear Phys. B 646(3), 353–497 (2002).  https://doi.org/10.1016/S0550-3213(02)00744-7 arXiv:hep-th/0204148 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. FRS04a.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. II. Unoriented world sheets. Nuclear Phys. B 678(3), 511–637 (2004).  https://doi.org/10.1016/j.nuclphysb.2003.11.026 arXiv:hep-th/0306164 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. FRS04b.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. III. Simple currents. Nuclear Phys. B 694(3), 277–353 (2004).  https://doi.org/10.1016/j.nuclphysb.2004.05.014 arXiv:hep-th/0403157 ADSMathSciNetzbMATHGoogle Scholar
  41. FRS05.
    Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. IV. Structure constants and correlation functions. Nuclear Phys. B 715(3), 539–638 (2005).  https://doi.org/10.1016/j.nuclphysb.2005.03.018 arXiv:hep-th/0412290 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. Gan09.
    Ganter, N.: Hecke operators in equivariant elliptic cohomology and generalized Moonshine. In: Groups and Symmetries. CRM Proc. Lecture Notes, vol. 47, pp. 173–209. American Mathematical Society, Providence (2009). arXiv:0706.2898
  43. Gan16.
    Gannon T.: Much ado about Mathieu. Adv. Math. 301, 322–358 (2016).  https://doi.org/10.1016/j.aim.2016.06.014 arXiv:1211.5531 MathSciNetCrossRefzbMATHGoogle Scholar
  44. GJF17.
    Gaiotto, D., Johnson-Freyd, T.: Symmetry protected topological phases and generalized cohomology. (2017). arXiv:1712.07950
  45. GL96.
    Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996) arXiv:hep-th/9505059 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. GPRV13.
    Gaberdiel M.R., Persson D., Ronellenfitsch H., Volpato R.: Generalized Mathieu Moonshine. Commun. Number Theory Phys. 7(1), 145–223 (2013).  https://doi.org/10.4310/CNTP.2013.v7.n1.a5 arXiv:1211.7074 MathSciNetCrossRefzbMATHGoogle Scholar
  47. GW14.
    Gu, Z.-C., Wen, X.-G.: Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear \({\sigma}\) models and a special group supercohomology theory. Phys. Rev. B 90(115141) (2014).  https://doi.org/10.1103/PhysRevB.90.115141. arXiv:1201.2648
  48. HC11.
    Henriques, A., Carnahan, S.: H 4 of the monster. MathOverflow (2011). https://mathoverflow.net/q/69222/
  49. HO06.
    Holt D.F., O’Brien E.A.: A computer-assisted analysis of some matrix groups. J. Algebra 300(1), 199–212 (2006).  https://doi.org/10.1016/j.jalgebra.2006.02.019 MathSciNetCrossRefzbMATHGoogle Scholar
  50. Iva09.
    Ivanov, A.A.: The Monster Group and Majorana Involutions. Cambridge Tracts in Mathematics, vol. 176. Cambridge University Press, Cambridge (2009)Google Scholar
  51. JFT18.
    Johnson-Freyd, T., Treumann, D.: \({\mathrm{H}^4(\mathrm{Co}_0;\mathbf{Z}) = \mathbf{Z}/24}\). Int. Math. Res. Not. IMRN (2018). arXiv:1707.07587
  52. JL09.
    Jordan D., Larson E.: On the classification of certain fusion categories. J. Noncommut. Geom. 3(3), 481–499 (2009).  https://doi.org/10.4171/JNCG/44 arXiv:0812.1603 MathSciNetCrossRefzbMATHGoogle Scholar
  53. Kir02.
    Kirillov A. Jr: Modular categories and orbifold models. Commun. Math. Phys. 229(2), 309–335 (2002).  https://doi.org/10.1007/s002200200650 arXiv:math/0104242 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. KL06.
    Kawahigashi Y., Longo R.: Local conformal nets arising from framed vertex operator algebras. Adv. Math. 206(2), 729–751 (2006).  https://doi.org/10.1016/j.aim.2005.11.003 arXiv:math/0407263 MathSciNetCrossRefzbMATHGoogle Scholar
  55. KO02.
    Kirillov A., Ostrik V. Jr: On a q-analogue of the McKay correspondence and the ADE classification of \({{\mathfrak{sl}}_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002).  https://doi.org/10.1006/aima.2002.2072 arXiv:math/0101219 MathSciNetCrossRefzbMATHGoogle Scholar
  56. Lep85.
    Lepowsky J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. U.S.A. 82(24), 8295–8299 (1985).  https://doi.org/10.1073/pnas.82.24.8295 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. LR95.
    Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys., 7(4), 567–597 (1995). Workshop on algebraic quantum field theory and jones theory (Berlin, 1994).  https://doi.org/10.1142/S0129055X95000232. arXiv:funct-an/9604008
  58. Lur09.
    Lurie, J.: On the classification of topological field theories. In: Current Developments in Mathematics, 2008, pp. 129–280. International Press, Somerville (2009). arXiv:0905.0465
  59. LX04.
    Longo R., Xu F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004).  https://doi.org/10.1007/s00220-004-1063-1 arXiv:math/0309366 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. Mol16.
    Möller, S.: A cyclic orbifold theory for holomorphic vertex operator algebras and applications. PhD thesis, Technische Universität Darmstadt (2016). arXiv:1611.09843
  61. Mug10.
    Müger, M.:On superselection theory of quantum fields in low dimensions. In: XVIth International Congress on Mathematical Physics, pp. 496–503. World Scientific Publishers, Hackensack (2010).  https://doi.org/10.1142/9789814304634_0041
  62. Nik13.
    Nikshych, D.: Morita equivalence methods in classification of fusion categories. In: Hopf Algebras and Tensor Categories. Contemp. Math., vol. 585, pp. 289–325. American Mathematical Society, Providence, RI, 2013.  https://doi.org/10.1090/conm/585/11607. arXiv:1208.0840
  63. Soi87.
    Soicher L.H.: Presentations for Conway’s group \({{{\rm Co}}_1}\). Math. Proc. Camb. Philos. Soc. 102(1), 1–3 (1987).  https://doi.org/10.1017/S0305004100066986 CrossRefGoogle Scholar
  64. Tho86.
    Thomas, C.B.: Characteristic Classes and the Cohomology of Finite Groups. Cambridge Studies in Advanced Mathematics, vol. 9. Cambridge University Press, Cambridge (1986)Google Scholar
  65. Tho10.
    Thomas, C.B.: Moonshine and group cohomology. In: Moonshine: The First Quarter Century and Beyond. London Mathematical Society Lecture Note Series, vol. 372, pp. 358–377. Cambridge University Press, Cambridge (2010)Google Scholar
  66. Tui92.
    Tuite M.P.: Monstrous Moonshine from orbifolds. Commun. Math. Phys. 146(2), 277–309 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. Tur10.
    Turaev, V.: Homotopy Quantum Field Theory. EMS Tracts in Mathematics, vol. 10. European Mathematical Society (EMS), Zürich (2010). Appendix 5 by Michael Müger and Appendices 6 and 7 by Alexis Virelizier.  https://doi.org/10.4171/086
  68. TV10.
    Turaev, V., Virelizier, A.: On two approaches to 3-dimensional tqfts. (2010). arXiv:1006.3501
  69. TV17.
    Turaev, V., Virelizier, A.: Monoidal Categories and Topological Field Theory. Progress in Mathematics, vol. 322. Birkhäuser/Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-49834-8
  70. Wen13.
    Wen, X.-G.: Classifying gauge anomalies through spt orders and classifying gravitational anomalies through topological orders. Phys. Rev. D 88(4) (2013).  https://doi.org/10.1103/PhysRevD.88.045013. arXiv:1303.1803
  71. WG17.
    Wang, Q.-R., Gu, Z.-C.: Towards a complete classification of fermionic symmetry protected topological phases in 3d and a general group supercohomology theory. (2017). arXiv:1703.10937
  72. Xu00.
    Xu F.: Algebraic orbifold conformal field theories. Proc. Natl. Acad. Sci. U.S.A. 97(26),14069–14073 (2000).  https://doi.org/10.1073/pnas.260375597 arXiv:math/0004150 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations