Induced C*-Complexes in Metaplectic Geometry

  • Svatopluk Krýsl


For a symplectic manifold admitting a metaplectic structure and for a Kuiper map, we construct a complex of differential operators acting on exterior differential forms with values in the dual of Kostant’s symplectic spinor bundle. Defining a Hilbert C*-structure on this bundle for a suitable C*-algebra, we obtain an elliptic C*-complex in the sense of Mishchenko–Fomenko. Its cohomology groups appear to be finitely generated projective Hilbert C*-modules. The paper can serve as a guide for handling differential complexes and PDEs on Hilbert bundles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albin, P., Leichtnam, E., Mazzeo, R., Piazza, P.: Hodge theory on Cheeger spaces (2016)., on-line published in 2016. ArXiv–preprint
  2. 2.
    Bakić D., Guljaš B.: Operators on Hilbert H *-modules. J. Oper. Theory 46(1), 123–137 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Birkhoff G., von Neumann J.: The logic of quantum mechanics. Ann. Math. (2) 37, 823–843 (1936)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bongioanni B., Torrea J.: Sobolev spaces associated to the harmonic oscillator. Proc. Indian Acad. Sci. Math. Sci. 116((3), 337–360 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Second edition. Mathematical Surveys and Monographs, vol. 67. American Mathematical Society, Providence (2000)Google Scholar
  6. 6.
    Bruhat F.: Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France 84, 97–205 (1956)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cahen M., Gutt S., La Fuente Gravy L., Rawnsley J.: On Mp c-structures and symplectic Dirac operators. J. Geom. Phys. 86, 434–466 (2014)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Connes A.: Noncommutative Geometry. Academic Press, Inc., San Diego (1994)zbMATHGoogle Scholar
  9. 9.
    Dixmier J., Douady A.: Champs continus d’espaces hilbertiens et de C *-algébres. Bull. Soc. Math. France 91, 227–284 (1963)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dixmier J.: Les C *-algébres et leurs représentations. Gauthier-Villars, Paris (1969)zbMATHGoogle Scholar
  11. 11.
    Dubois-Violette M., Michor P.: Connections on central bimodules in noncommutative differential geometry. J. Geom. Phys. 20(2–3), 218–232 (1996)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fathizadeh, F., Gabriel, O.: On the Chern–Gauss–Bonnet theorem and conformally twisted spectral triples for C *-dynamical systems. SIGMA Symmetry Integrability Geom. Methods Appl. 12, paper No. 016. (2016)Google Scholar
  13. 13.
    Folland G.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, 122. Princeton Univ. Press, Princeton (1989)Google Scholar
  14. 14.
    Fomenko A., Mishchenko A.: The index of elliptic operators over C *-algebras. Math. USSR-Izv. 15, 87–112 (1980)CrossRefGoogle Scholar
  15. 15.
    Forger M., Hess H.: Universal metaplectic structures and geometric quantization. Commun. Math. Phys. 64(3), 269–278 (1979)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Freed D., Lott J.: An index theorem in differential K-theory. Geom. Topol. 14(2), 903–966 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Goodman R.: Analytic and entire vectors for representations of Lie groups. Trans. Am. Math. Soc. 143, 55–76 (1969)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Grothendieck, A.: Produits tensoriels topologiques et Espaces nucléaires. Amer. Mat. Soc., Providence (1966)Google Scholar
  19. 19.
    Habermann K.: The Dirac operator on symplectic spinors. Ann. Glob. Anal. Geom. 13(2), 155–168 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Habermann K., Habermann L.: Introduction to Symplectic Dirac Operators. Lecture Notes in Mathematics 1887. Springer, Berlin (2006)zbMATHGoogle Scholar
  21. 21.
    Hain, R.: The Hodge–de Rham theory of modular groups. In: Fernández, J.A. (ed.) Recent Advances in Hodge Theory. London Math. Soc. Lecture Note Ser., vol. 427, pp. 422–514. Cambridge University Press, Cambridge (2016)Google Scholar
  22. 22.
    Henneaux M., Teitelboim C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  23. 23.
    Herczeg, G., Waldron, A.: Contact geometry and Quantum mechanics. Phys. Lett. Sect. B Nucl. Elem. Particle High Energy Phys. 781, 312 –315 (2018). ADSCrossRefGoogle Scholar
  24. 24.
    Hodge, W.: The Theory and Applications of Harmonic Integrals. 2nd edn. Cambridge, at the Univ. Press (1952)Google Scholar
  25. 25.
    Illusie L.: Complexes quasi-acycliques directs de fibrés banachiques. C. R. Acad. Sci. Paris 260, 6499–6502 (1965)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Keyl, M., Kiukas, J., Werner, R.: Schwartz operators. Rev. Math. Phys. 28(3):1630001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Kim J.: A splitting theorem for holomorphic Banach bundles. Math. Z. 263(1), 89–102 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kirillov, A.: Lectures on the Orbit Method. Graduate Studies in Mathematics, vol. 64. American Mathematical Society, Providence (2004). ISBN 0-8218-3530-0Google Scholar
  29. 29.
    Klein, F.: Über die Entwicklung der Mathematik im 19. Jahrhundert. Band 1, Springer, Berlin, 1926. Engl. transl. by M. Ackermann: Development of Mathematics in the 19th Century with Appendices “Kleinian Mathematics from an Advanced Standpoint” by R. Hermann, 1st edn. Math Sci Press, Brookline (1979)Google Scholar
  30. 30.
    Knapp, A.: Representation Theory of Semisimple Groups. An Overview Based on Examples, Reprint of the 1986 original. Princeton Landmarks in Mathematics. Princeton Univ. Press, Princeton (2001)Google Scholar
  31. 31.
    Kolář I., Michor P., Slovák J.: Natural Operations in Differential Geometry. Springer, Berlin (1993)CrossRefGoogle Scholar
  32. 32.
    Kostant, B.: Symplectic spinors. In: Symposia Mathematica, vol. XIV, pp. 139–152 (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973). Academic Press, London (1974)Google Scholar
  33. 33.
    Krýsl S.: Classification of 1st order symplectic spinor operators over contact projective geometries. Differ. Geom. Appl. 26(5), 553–565 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Krýsl S.: Cohomology of the de Rham complex twisted by the oscillatory representation. Differ. Geom. Appl. 33(5), 290–297 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Krýsl S.: Hodge theory for self-adjoint parametrix possessing complexes over C *-algebras. Ann. Glob. Anal. Geom. 47(4), 359–372 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Krýsl S.: Elliptic complexes over C *-algebras of compact operators. J. Geom. Phys. 101, 27–37 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Krýsl, S.: Hodge Theory and Symplectic Spinors. Habilitation thesis, Faculty of Mathematics and Physics, Charles University, Prague (2016). Short version at ArXiv
  38. 38.
    Kuiper N.: The homotopy type of the unitary group of Hilbert space. Topology 3, 19–30 (1965)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Larraín-Hubach, A.: K-theories for classes of infinite rank bundles. In: Ho, M.-H. (ed.) Analysis, Geometry and Quantum Field Theory. Contemp. Math., vol. 584, pp. 79–97. Amer. Math. Soc., Providence (2012)Google Scholar
  40. 40.
    Lempert L.: On the cohomology groups of holomorphic Banach bundles. Trans. Am. Math. Soc. 361(8), 4013–4025 (2009)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Li P.: Cauchy–Schwarz-type inequalities on Kähler manifolds–II. J. Geom. Phys. 99, 256–262 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Ludwig G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien. Zeitschrifft für Physik 181(3), 233–260 (1964)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Maeda, Y., Rosenberg, S.: Traces and Characteristic Classes in Infinite Dimensions, Geometry and Analysis on Manifolds. Progr. Math., vol. 308, pp. 413–435. Birkhäuser/Springer, Cham (2015)Google Scholar
  44. 44.
    Magajna B.: Hilbert C *-modules in which all closed submodules are complemented. Proc. Am. Math. Soc. 125(3), 849–852 (1997)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Mathai, V., Melrose, R., Singer, I.: The index of projective families of elliptic operators: the decomposable case. In: Dai, X., et al. (eds.) From Probability to Geometry II (Volume in honor of the 60th birthday of Jean-Michel Bismut), vol. 328, pp. 255–296. Paris SMF, Astérisque (2009)Google Scholar
  46. 46.
    Maurin, K.: The Riemann Legacy. Riemannian Ideas in Mathematics and Physics. Mathematics and its Applications, vol. 417. Kluwer Academic Publishers Group, Dordrecht (1997)Google Scholar
  47. 47.
    Michor, P.: Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)Google Scholar
  48. 48.
    Mishchenko A.: The theory of elliptic operators over C *-algebras. Dokl. Akad. Nauk SSSR 239(6), 1289–1291 (1978)MathSciNetGoogle Scholar
  49. 49.
    Neeb K.: On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal. 259(11), 2814–2855 (2010)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Nekovář, J., Scholl, A.: Introduction to plectic cohomology. In: Jiang, D., Shahidi, F., Soudry, D. (eds.) Advances in the Theory of Automorphic Forms and Their L-Functions. Contemp. Math., vol. 664, pp. 321–337. Amer. Math. Soc., Providence RI (2016)Google Scholar
  51. 51.
    von Neumann J.: Zur Operathorenmethode in der klassischen Mechanik. Ann. Math. (2) 33, 257–642 (1932)Google Scholar
  52. 52.
    Palais, R.: Seminar on the Atiyah–Singer Index Theorem (with contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay). Annals of Mathematics Studies, No. 57. Princeton Univ. Press, Princeton (1965)Google Scholar
  53. 53.
    Paschke W.: Inner product modules over B *-algebras. Trans. Am. Math. Soc. 182, 443–468 (1973)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Raeburn, I., Williams, D.: Morita Equivalence and Continuous-Trace C *-Algebras. Mathematical Surveys and Monographs, vol. 60. American Mathematical Society, Providence (1998). ISBN 0-8218-0860-5Google Scholar
  55. 55.
    Rieffel M.: Induced representations of C *-algebras. Adv. Math. 13(2), 176–257 (1973)CrossRefGoogle Scholar
  56. 56.
    Robinson, P., Rawnsley, J.: The metaplectic representation, Mp c-structures and geometric quantization. Mem. Am. Math. Soc. 410 (1989)Google Scholar
  57. 57.
    Röhrl, H.: Über die Kohomologie berechenbarer Fréchet Garben. Comment. Math. Univ. Carolinae 10, 625–640 (1969)Google Scholar
  58. 58.
    Rørdam, M., Larsen, F., Laustsen, N. J.: An Introduction to K-Theory for C *-Algebras. London Mathematical Society. Cambridge University Press, Cambridge (2000)Google Scholar
  59. 59.
    Rosenberg, J.: Topology, C *-algebras, and string duality. CBMS Regional Conference Series in Mathematics, 111. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence (2009)Google Scholar
  60. 60.
    Ryan, R.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London (2002)CrossRefGoogle Scholar
  61. 61.
    Schick T.: L 2-index theorems, KK-theory, and connections. N. Y. J. Math. 11, 387–443 (2005)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Schmid, W., Vilonen, K.: Hodge theory and unitary representations. Representations of reductive groups. Progr. Math., vol. 312, pp. 443–453. Birkhäuser/Springer, Cham (2015)Google Scholar
  63. 63.
    Schottenloher, M.: The unitary group and its strong topology. ArXiv–preprint
  64. 64.
    Shale D.: Linear symmetries of free boson fields. Trans. Am. Math. Soc. 103, 149–167 (1962)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Solovyev (Solov’ëv), Y., Troitsky (Troickij), E.: C *-Algebras and Elliptic Operators in Differential Topology. Transl. of Mathem. Monographs, vol. 192. Amer. Math. Soc., Providence (2001)Google Scholar
  66. 66.
    Troitsky E.: The index of equivariant elliptic operators over C *-algebras. Ann. Glob. Anal. Geom. 5(1), 3–22 (1987)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Tsai C., Tseng L., Yau S.: Cohomology and Hodge theory on symplectic manifolds: III. J. Differ. Geom. 103(1), 83–143 (2016)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Wallach, N.: Symplectic Geometry and Fourier Analysis. With an Appendix on Quantum Mechanics by Robert Hermann. Lie Groups: History, Frontiers and Applications, Vol. V. Math Sci Press, Brookline (1977)Google Scholar
  69. 69.
    Warner, G.: Harmonic Analysis on Semi-simple Lie Groups I. Die Grundlehren der mathematischen Wissenschaften, Band 188. Springer, New York–Heidelberg, (1972)Google Scholar
  70. 70.
    Weil A.: Sur certains groupes d’opérateurs unitaires. Acta Math. No. 111, 143–211 (1964)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations