Communications in Mathematical Physics

, Volume 363, Issue 3, pp 955–1002 | Cite as

Nematic Liquid Crystal Phase in a System of Interacting Dimers and Monomers

  • Ian Jauslin
  • Elliott H. Lieb


We consider a monomer-dimer system with a strong attractive dimer-dimer interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned, but do not manifest any translational order. We prove this conjecture for large dimer activity and strong interactions. The proof follows a Pirogov-Sinai scheme, in which we map the dimer model to a system of hard-core polymers whose partition function is computed using a convergent cluster expansion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Alessandro Giuliani, Diego Alberici and Daniel Ueltschi for helpful discussions about this work. The work of E.H.L. was partially supported by U.S. National Science Foundation grant PHY 1265118. The work of I.J. was supported by The Giorgio and Elena Petronio Fellowship Fund and The Giorgio and Elena Petronio Fellowship Fund II.


  1. AH80.
    Abraham D.B., Heilmann O.J.: Interacting dimers on the simple cubic lattice as a model for liquid crystals. J. Phys. A Math. Gen. 13(3), 1051–1062 (1980)ADSCrossRefGoogle Scholar
  2. Al16.
    Alberici D.: A cluster expansion approach to the heilmann–lieb liquid crystal model. J. Stat. Phys. 162(3), 761–791 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. ACM14.
    Alberici D., Contucci P., Mingione E.: A mean-field monomer-dimer model with attractive interaction: Exact solution and rigorous results. J. Math. Phys. 55(6), 063301 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. AZ82.
    Angelescu N., Zagrebnov V.A.: A lattice model of liquid crystals with matrix order parameter. J. Phys. A Math. Gen. 15(11), L639–L643 (1982)ADSMathSciNetCrossRefGoogle Scholar
  5. BZ00.
    Bovier, A., Zahradník, M.: A simple inductive approach to the problem of convergence of cluster expansions of polymer models. J. Stat. Phys. 100(3/4):765–778 (2000) Google Scholar
  6. BKL84.
    Bricmont J., Kuroda K., Lebowitz J.L.: The structure of gibbs states and phase coexistence for non-symmetric continuum widom rowlinson models. Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete 67(2), 121–138 (1984)CrossRefGoogle Scholar
  7. BKL85.
    Bricmont J., Kuroda K., Lebowitz J.L.: First order phase transitions in lattice and continuous systems: Extension of pirogov-sinai theory. Commun. Math. Phys. 101(4), 501–538 (1985)ADSMathSciNetCrossRefGoogle Scholar
  8. DG13.
    Disertori M., Giuliani A.: The nematic phase of a system of long hard rods. Commun. Math. Phys. 323(1), 143–175 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. GBG04.
    Gallavotti G., Bonetto F., Gentile G.: Aspects of the Ergodic, Qualitative and Statistical Properties of Motion. Springer, Berlin (2004)CrossRefGoogle Scholar
  10. GM01.
    Gentile G., Mastropietro V.: Renormalization group for one-dimensional fermions. a review on mathematical results. Phys. Rep. 352(4-6), 273–437 (2001)ADSMathSciNetCrossRefGoogle Scholar
  11. HL72.
    Heilmann O.J., Lieb E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25(3), 190–232 (1972)ADSMathSciNetCrossRefGoogle Scholar
  12. HL79.
    Heilmann O.J., Lieb E.H.: Lattice models for liquid crystals. J. Stat. Phys. 20(6), 679–693 (1979)ADSMathSciNetCrossRefGoogle Scholar
  13. IVZ06.
    Ioffe D., Velenik Y., Zahradník M.: Entropy-driven phase transition in a polydisperse hard-rods lattice system. J. Stat. Phys. 122(4), 761–786 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. KP84.
    Kotecký, R., Preiss, D.: An inductive approach to the pirogov-sinai theory. In: Proceedings of the 11th Winter School on Abstract Analysis, Rendiconti del Circolo Metematico di Palermo, Serie II, supplemento 3, pp. 161–164 (1984)Google Scholar
  15. KP86.
    Kotecký R., Preiss D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103(3), 491–498 (1986)ADSMathSciNetCrossRefGoogle Scholar
  16. Ma37.
    Mayer J.E.: The statistical mechanics of condensing systems. i. J. Chem. Phys. 5(1), 67–73 (1937)ADSCrossRefGoogle Scholar
  17. On49.
    Onsager L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51(4), 627–659 (1949)ADSCrossRefGoogle Scholar
  18. PCF14.
    Papanikolaou, S., Charrier, D., Fradkin, E.: Ising nematic fluid phase of hard-core dimers on the square lattice. Phys. Rev. B 89(3) (2014)
  19. PS75.
    Pirogov S.A., Sinai Y.G.: Phase diagrams of classical lattice systems. Theor. Math. Phys. 25(3), 1185–1192 (1975)MathSciNetCrossRefGoogle Scholar
  20. Ru99.
    Ruelle D.: Statistical mechanics: Rigorous results. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  21. Ur27.
    Ursell H.D.: The evaluation of gibbs’ phase-integral for imperfect gases. Math. Proc. Camb. Philos. Soc. 23(06), 685 (1927)ADSCrossRefGoogle Scholar
  22. Za96.
    Zagrebnov V.: Long-range order in a lattice-gas model of nematic liquid crystals. Physica A Stat. Mech. Appli. 232(3-4), 737–746 (1996)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations