Advertisement

Communications in Mathematical Physics

, Volume 363, Issue 1, pp 191–260 | Cite as

Tau-Structure for the Double Ramification Hierarchies

  • Alexandr Buryak
  • Boris Dubrovin
  • Jérémy Guéré
  • Paolo RossiEmail author
Article

Abstract

In this paper we continue the study of the double ramification hierarchy of Buryak (Commun Math Phys 336(3):1085–1107, 2015). After showing that the DR hierarchy satisfies tau-symmetry we define its partition function as the (logarithm of the) tau-function of the string solution and show that it satisfies various properties (string, dilaton, and divisor equations plus some important degree constraints). We then formulate a stronger version of the conjecture from Buryak (2015): for any semisimple cohomological field theory, the Dubrovin–Zhang and double ramification hierarchies are related by a normal [i.e. preserving the tau-structure (Dubrovin et al. in Adv Math 293:382–435, 2016)] Miura transformation which we completely identify in terms of the partition function of the CohFT. In fact, using only the partition functions, the conjecture can be formulated even in the non-semisimple case (where the Dubrovin–Zhang hierarchy is not defined). We then prove this conjecture for various CohFTs (trivial CohFT, Hodge class, Gromov–Witten theory of \({\mathbb{CP}^1}\), 3-, 4- and 5-spin classes) and in genus 1 for any semisimple CohFT. Finally we prove that the higher genus part of the DR hierarchy is basically trivial for the Gromov–Witten theory of smooth varieties with non-positive first Chern class and their analogue in Fan–Jarvis–Ruan–Witten quantum singularity theory (Fan et al. in Ann Math 178(1):1–106, 2013).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Andrea Brini, Guido Carlet, Rahul Pandharipande, Sergey Shadrin, and Dimitri Zvonkine for useful discussions. A. B. was supported by Grant ERC-2012-AdG-320368-MCSK in the group of R. Pandharipande at ETH Zurich, Grant RFFI-16-01-00409 and the Marie Curie Fellowship (Project ID 797635). B. D. was partially supported by PRIN 2010-11 Grant “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions” of Italian Ministry of Universities and Researches. J. G. was supported by the Einstein foundation. P. R. was partially supported by a Chaire CNRS/Enseignement superieur 2012-2017 Grant. Part of the work was completed during the visits of B. D. and P. R to the Forschungsinstitut für Mathematik at ETH Zürich in 2014 and 2015.

References

  1. BCRR17.
    Brini A., Carlet G., Romano S., Rossi P.: Rational reductions of the 2D-Toda hierarchy and mirror symmetry. J. Eur. Math. Soc. 19(3), 835–880 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bur15.
    Buryak A.: Double ramification cycles and integrable hierarchies. Commun. Math. Phys. 336(3), 1085–1107 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. BG16.
    Buryak A., Guéré J.: Towards a description of the double ramification hierarchy for Witten’s r-spin class. J. Math. Pures Appl. 106(5), 837–865 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. BPS12a.
    Buryak A., Posthuma H., Shadrin S.: On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket. J. Geom. Phys. 62(7), 1639–1651 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. BPS12b.
    Buryak A., Posthuma H., Shadrin S.: A polynomial bracket for the Dubrovin–Zhang hierarchies. J. Differ. Geom. 92(1), 153–185 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. BR16a.
    Buryak A., Rossi P.: Recursion relations for double ramification hierarchies. Commun.Math. Phys. 342(2), 533–568 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. BR16b.
    Buryak A., Rossi P.: Double ramification cycles and quantum integrable systems. Lett. Math. Phys. 106(3), 289–317 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. BSSZ15.
    Buryak A., Shadrin S., Spitz L., Zvonkine D.: Integrals of \({\psi}\)-classes over double ramification cycles. Am. J. Math. 137(3), 699–737 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. COGP91.
    Candelas, P., Ossa, X.C.de la , Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1): 21–74 (1991)Google Scholar
  10. CIR14.
    Chiodo A., Iritani H., Ruan Y.: Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes Études Sci. 119, 127–216 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. CR10.
    Chiodo A., Ruan Y.: Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math. 182(1), 117–165 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. CR11a.
    Chiodo A., Ruan Y.: LG/CY correspondence: the state space isomorphism. Adv. Math. 227(6), 2157–2188 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. CR11b.
    Chiodo A., Ruan Y.: A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence. Ann. Inst. Fourier (Grenoble) 61(7), 2803–2864 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Dim92.
    Dimca A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  15. Dub98.
    Dubrovin,B.:Differential geometry of the space of orbits of a Coxeter group. In: Surveys in Differential Geometry: Integral Systems (Integrable Systems), Surveys in Differential Geometry, vol. 4, pp. 181–211, International Press, Boston, MA (1998)Google Scholar
  16. DLYZ16.
    Dubrovin B.A., Liu S.-Q., Yang D., Zhang Y.: Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs. Adv. Math. 293, 382–435 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. DN83.
    Dubrovin B.A., Novikov S.P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov–Whitham averaging method. Sov. Math. Dokl. 27, 665–669 (1983)zbMATHGoogle Scholar
  18. DZ98.
    Dubrovin B., Zhang Y.: Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198(2), 311–361 (1998)ADSCrossRefzbMATHGoogle Scholar
  19. DZ05.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants. A new 2005 version of arXiv:math/0108160
  20. FSZ10.
    Faber C., Shadrin S., Zvonkine D.: Tautological relations and the r-spin Witten conjecture. Ann. Sci. l’Éole Norm. Supér. (4) 43(4), 621–658 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. FFJMR16.
    Fan H., Francis A., Jarvis T., Merrell E., Ruan Y.: Witten’s D 4 Integrable Hierarchies Conjecture. Chin. Ann. Math. 37(2), 175–192 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. FJR07.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation and its virtual fundamental cycle. arXiv:0712.4025
  23. FJR13.
    Fan H., Jarvis T., Ruan Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. Get97.
    Getzler E.: Intersection theory on \({\overline{\mathcal{M}}_{1,4}}\) and elliptic Gromov–Witten invariants. J. Am. Math. Soc. 10(4), 973–998 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Get99.
    Getzler, E.: The Virasoro conjecture for Gromov–Witten invariants. In: Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998). Contemporary Mathematics, vol. 241, pp. 147–176. American Mathematical Society, Providence, RI (1999)Google Scholar
  26. Giv96.
    Givental A.: Equivariant Gromov–Witten invariants. Int. Math. Res. Not. 1996(13), 613–663 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. Giv04.
    Givental, A.: Symplectic geometry of Frobenius structures. In: Frobenius Manifolds, Aspects Mathematics, vol. E36, 91–112. Friedr. Vieweg, Wiesbaden (2004)Google Scholar
  28. Gue16.
    Guéré J.: theoremwithout concavity. Duke Math. J. 165(13), 2461–2527 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Gue17.
    Guéré J.: Hodge integrals in FJRW theory. Michigan Math. J. 66(4), 831–854 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. GueMa.
    Guéré, J.: Maple computer program. on Jérémy Guéré’s websiteGoogle Scholar
  31. Hai13.
    Hain, R.: Normal functions and the geometry of moduli spaces of curves. In: Handbook of Moduli, vol. I, Advanced Lectures in Mathematics (ALM), vol. 24, pp. 527–578, International Press, Somerville, MA (2013)Google Scholar
  32. Kon92.
    Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. KM94.
    Kontsevich M., Manin Yu.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Commun. Math. Phys. 164(3), 525–562 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. LRZ15.
    Liu S.-Q., Ruan Y., Zhang Y.: BCFG Drinfeld–Sokolov hierarchies and FJRW-theory. Invent. Math. 201(2), 711–772 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. MW13.
    Marcus, S.,Wise, J.: Stable maps to rational curves and the relative Jacobian. arXiv:1310.5981
  36. Mil14.
    Milanov T.: Analyticity of the total ancestor potential in singularity theory. Adv. Math. 255, 217–241 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. PPZ15.
    Pandharipande R., Pixton A., Zvonkine D.: Relations on \({\overline{\mathcal{M}}_{g,n}}\) via 3-spin structures. J. Am. Math. Soc. 28(1), 279–309 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. PV16.
    Polishchuk A., Vaintrob A.: Matrix factorizations and cohomological field theories. J. Reine Angew. Math. 714, 1–122 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. Ros10.
    Rossi, P.: Integrable systems and holomorphic curves. In: Proceedings of the Göa Geometry–Topology Conference 2009, pp. 34–57, International Press, Somerville, MA (2010)Google Scholar
  40. Ros15.
    Rossi, P.: Nijenhuis operator in contact homology and descendant recursion in symplectic field theory. In: Proceedings of the Göa Geometry–Topology Conference 2014, pp. 156–191, Gökova Geometry/Topology Conference (GGT), Gökova (2015)Google Scholar
  41. Tel12.
    Teleman C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. Wit91.
    Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243–310, Lehigh University, Bethlehem, PA (1991)Google Scholar
  43. Wit93.
    Witten E.: Phases of N =  2 theories in two dimensions. Nucl. Phys. B 403(1–2), 159–222 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of LeedsLeedsUK
  2. 2.SISSATriesteItaly
  3. 3.Univ. Grenoble Alpes, CNRS, Institut FourierGrenobleFrance
  4. 4.IMB, UMR5584 CNRSUniversité de Bourgogne Franche-ComtéDijonFrance

Personalised recommendations