Communications in Mathematical Physics

, Volume 363, Issue 3, pp 767–788 | Cite as

Entropic Repulsion and Lack of the g-Measure Property for Dyson Models

  • Rodrigo Bissacot
  • Eric O. Endo
  • Aernout C. D. van Enter
  • Arnaud Le NyEmail author


We consider Dyson models, Ising models with slow polynomial decay, at low temperature and show that its Gibbs measures deep in the phase transition region are not g-measures. The main ingredient in the proof is the occurrence of an entropic repulsion effect, which follows from the mesoscopic stability of a (single-point) interface for these long-range models in the phase transition region.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the referees for a number of helpful remarks and suggestions. We also thank S. Bethuelsen, M. Cassandro, L. Cioletti, D. Conache, R. Fernández, S. Gallo, G. Iacobelli, G. Maillard, F. Paccaut, P. Picco, and E. Verbitskiy for various helpful conversations over the years. We thank Evgeny Verbitskiy for providing us with [4] and Jorge Littin for providing us with [59]. RB is partially supported by the Dutch stochastics cluster STAR, by FAPESP Grants 2011/16265-8, 2016/08518-7 and 2016/25053-8, CNPq Grants 453985/2016-5, 312112/2015-7 and 446658/2014-6. EOE is supported by FAPESP Grants 2014/10637-9 and 2015/14434-8. ALN has benefited from Dutch supports (STAR, EURANDOM, Lorentz Center, TU Delft, RU Groningen) for short research visits to the Netherlands and from Franco-Dutch supports (CNRS, Networks) for a longer research visit at the CNRS UMI Eurandom during the academic year 2017–2018, when this work was achieved.


  1. 1.
    Aizenman M., Chayes J., Chayes L., Newman C.: Discontinuity of the magnetization in the one-dimensional \({1/| x-y |^2}\) percolation, ising and potts models. J. Stat. Phys. 50(1/2), 1–40 (1988)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Berbee H.: Chains with infinite connections: uniqueness and Markov representation. Prob. Theory Rel. Fields 76, 243–253 (1987)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berger N., Hoffman C., Sidoravicius V.: Nonuniqueness for specifications in \({l^{2+ \epsilon}}\). Ergod. Theory Dyn. Syst. 38(4), 1342–1352 (2018)CrossRefzbMATHGoogle Scholar
  4. 4.
    Berghout, S., Fernández, R., Verbitskiy, E.: On the relation between Gibbs and g-measures. Ergod. Theory Dyn. Syst. (2018).
  5. 5.
    Bissacot, R., Endo, E.O., van Enter, A.C.D., Kimura, B., Ruszel, W.M.: Contour methods for long-range Ising models: weakening nearest-neighbor interactions and adding decaying fields. J. Ann. Henri Poincaré 19(8), 2557–2574 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. 2nd Edition (Chazottes, J.-R. ed.), Springer Lecture Notes in Mathematics, vol. 470 (2008)Google Scholar
  7. 7.
    Bramson M., Kalikow S.: Non-uniqueness in g-functions. Isr. J. Math. 84, 153–160 (1993)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bricmont J., Lebowitz J., Pfister C.-E.: On the equivalence of boundary conditions. J. Stat. Phys. 21(5), 573–582 (1979)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Brown G., Dooley A.H.: Odometer actions on g-measures. Ergod. Theory Dyn. Syst. 11, 279–307 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brown G., Dooley A.H.: On G-measures and product measures. Ergod. Theory Dyn. Syst. 18, 95–107 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cassandro M., Ferrari P.A., Merola I., Presutti E.: Geometry of contours and Peierls estimates in d = 1 Ising models with long range interactions. J. Math. Phys. 46(5), 0533305 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cassandro M., Merola I., Picco P.: Phase separation for the long range one-dimensional Ising model. J. Stat. Phys. 167(2), 351–382 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cassandro M., Merola I., Picco P., Rozikov U.: One-dimensional ising models with long range interactions: cluster expansion, phase-separating point. Commun. Math. Phys. 327, 951–991 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cassandro M., Orlandi E., Picco P.: Phase transition in the 1D random field Ising model with long range interaction. Commun. Math. Phys. 288, 731–744 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cioletti L., Lopes A.O.: Interactions, specifications, DLR probabilities and the ruelle operator in the one-dimensional lattice. Discrete Contin. Dyn. Syst. A 37, 6139 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cioletti L., Lopes A.O.: Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach. J. Stat. Phys. 159(6), 1424–1455 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cioletti, L., Lopes, A.O.: Ruelle operator for continuous potentials and DLR-Gibbs measures. Preprint (2016). arXiv:1608.03881v2
  18. 18.
    Dias J.C.A., Friedli S.: Uniqueness vs. non-uniqueness for complete connections with modified majority rules. Prob. Theory Rel. Fields 164, 893–929 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dobrushin R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Prob. Appl. 13, 197–224 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dyson F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91–107 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dyson F.J.: An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269–283 (1971)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Dyson, F.J.: Existence and nature of phase transition in one-dimensional Ising ferromagnets. SIAM-AMS Proceedings. Vol. V, pp. 1–12 (1972)Google Scholar
  23. 23.
    van Enter A.C.D., Fernández R., Sokal A.D.: Regularity properties and pathologies of position-space renormalization group transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    van Enter A.C.D., Le Ny A.: Decimation of the Dyson-Ising ferromagnet. Stoch. Process. Appl. 127(11), 3776–3791 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fernández, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier, A., van Enter, A., den Hollander, F., Dunlop, F., (eds.) Mathematical Statistical Physics. Proceedings of the 83rd Les Houches Summer School (July 2005). Elsevier (2006)Google Scholar
  26. 26.
    Fernández R., Maillard G.: Chains with complete connections and one-dimensional Gibbs measures. Electron. J. Prob. 9, 145–176 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fernández R., Maillard G.: Chains with complete connections: general theory, uniqueness, loss of memory and mixing properties. J. Stat. Phys. 118, 555–588 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fernández R., Maillard G.: Construction of a specification from its singleton part. ALEA 2, 297–315 (2006)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Fernández S., Maillard Gallo.G.: Regular g-measures are not always Gibbsian. Electron. C. Prob. 16, 732–740 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fernández R., Pfister C.-E.: Global specifications and non-quasilocality of projections of Gibbs measures. Ann. Prob. 25(3), 1284–1315 (1997)CrossRefzbMATHGoogle Scholar
  31. 31.
    Föllmer H.: On the global markov property. In: Streit, L. (ed.) Quantum Fields-Algebras, Processes, pp. 293–302. Springer, New York (1980)CrossRefGoogle Scholar
  32. 32.
    Friedli S.: A note on the Bramson–Kalikow process. Braz. J. Prob. Stat. 29, 427–442 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Friedli S., Velenik Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)CrossRefzbMATHGoogle Scholar
  34. 34.
    Fröhlich J., Israel R.B., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Fröhlich J., Spencer T.: The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy. Commun. Math. Phys. 84, 87–101 (1982)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Gallesco C., Gallo S., Takahashi D.Y.: Dynamic uniqueness for stochastic chains with unbounded memory. Stoch. Process. Appl. 128(2), 689–706 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Gallo S., Paccaut F.: Non-regular g-measures. Nonlinearity 26, 763–776 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Galves A., Löcherbach E.: Stochastic chains with memory of variable length. Rissanen Festschr. (Grünwald et al. eds). TISCP Ser. 38, 117–133 (2008)zbMATHGoogle Scholar
  39. 39.
    Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter (1988–2011)Google Scholar
  40. 40.
    Giacomin G.: Random Polymer Models. Imperial College Press, London (2007)CrossRefzbMATHGoogle Scholar
  41. 41.
    Goldstein S.: A note on specifications. Z. Wahrsch. Verw. Geb. 46, 45–51 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Goldstein S.: Remarks on the global Markov property. Commun. Math. Phys. 74, 223–234 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Harris T.E.: On chains of infinite order. Pac. J. Math. 5, 707–724 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Hulse P.: On the ergodic properties of Gibbs states for attractive specifications. J. Lond. Math. Soc. (2) 43(1), 119–124 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hulse P.: An example of non-unique g-measures. Ergod. Theory Dyn. Syst. 26, 439–445 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Imbrie J.Z., Newman C.M.: An intermediate phase with slow decay of correlations in one dimensional \({\frac{1}{|x-y|^2}}\) percolation, Ising and Potts models. Commun. Math. Phys. 118, 303–336 (1988)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Israel R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)zbMATHGoogle Scholar
  48. 48.
    Israel R.B.: Some examples concerning the global Markov property. Commun. Math. Phys. 105, 669–673 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Johansson A., Pollicott A., Pollicott M.: Unique Bernoulli g-measures. J. Eur. Math. Soc. 14, 1599–1615 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Johansson, A., Öberg, A., Pollicott, M.: Phase transitions in long-range ising models and an optimal condition for factors of g-measures. Ergod. Theory Dyn. Syst. (to appear) (2017)Google Scholar
  51. 51.
    Johansson K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141, 41–61 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Johansson K.: On the separation of phases in one-dimensional gases. Commun. Math. Phys. 169, 521–561 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Kac M., Thompson C.J.: Critical behaviour of several lattice models with long-range interaction. J. Math. Phys. 10, 1373–1386 (1969)ADSCrossRefzbMATHGoogle Scholar
  54. 54.
    Kalikow S.: Random Markov processes and uniform martingales. Isr. J. Math. 71, 33–54 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Keane M.: Strongly mixing g-measures. Invent. Math. 16, 309–324 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Kozlov O.: Gibbs description of a system of random variables. Probl. Inf. Transm. 10, 258–265 (1974)MathSciNetGoogle Scholar
  57. 57.
    Lanford O.E., Ruelle D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Lee T.D., Yang C.N.: Statistical theory of equations of state and phase transitions II. Lattice Gas Ising Model. Phys. Rev. 87, 404–409 (1952)zbMATHGoogle Scholar
  59. 59.
    Littin J., Picco P.: Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model. J. Math. Phys. 58(7), 073301 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Maes C., Redig F., Van Moffaert A.: Almost Gibbsian versus weakly Gibbsian measures. Stoch. Proc. Appl. 79(1), 1–15 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Pfister C.-E., Velenik Y.: Mathematical theory of the wetting phenomenon in the 2D Ising model. Helv. Phys. Acta 69, 949–973 (1996)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Preston, C.: Construction of specifications. In: Streit, L. (ed.) Quantum Fields-Algebras, Processes (Bielefeld symposium 1978), pp. 269–282. Springer, Wien (1980)CrossRefGoogle Scholar
  63. 63.
    Rissanen J.A.: Universal data compression system. IEEE Trans. Inf. Theory 29(5), 656–664 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Ruelle D.: Thermodynamic Formalism, 2nd Edn. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  65. 65.
    Sokal A.D.: Existence of compatible families of proper regular conditional probabilities. Z. Wahrsch. verw. Geb 56, 537–548 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Sinai, Ya.G.: Gibbs measures in ergodic theory. Russ. Math. Surv. 27(4), 21–69 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Sullivan W.G.: Potentials for almost Markovian random fields. Commun. Math. Phys. 33, 61–74 (1973)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Verbitskiy E.: On factors of g-measures. Ind. Math. 22, 315–329 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Walters P.: A natural space of functions for the Ruelle operator theorem. Ergod. Theory Dyn. Syst. 27(4), 1323–1348 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    von Weizsäcker, H.: A simple example concerning the global Markov property of lattice random fields. In: 8th Winter School on Abstract Analysis (1980)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rodrigo Bissacot
    • 1
  • Eric O. Endo
    • 1
    • 2
  • Aernout C. D. van Enter
    • 2
  • Arnaud Le Ny
    • 3
    Email author
  1. 1.Institute of Mathematics and Statistics - IMEUSP - University of São PauloSão PauloBrazil
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  3. 3.Laboratoire de Mathématiques et d’Analyse AppliquéesLAMA UMR CNRS 8050 – Université Paris-Est (UPEC)CréteilFrance

Personalised recommendations