Advertisement

Communications in Mathematical Physics

, Volume 363, Issue 1, pp 111–137 | Cite as

Long-Time Asymptotics for Polymerization Models

  • Juan Calvo
  • Marie DoumicEmail author
  • Benoît Perthame
Article

Abstract

This study is devoted to the long-term behavior of nucleation, growth and fragmentation equations, modeling the spontaneous formation and kinetics of large polymers in a spatially homogeneous and closed environment. Such models are, for instance, commonly used in the biophysical community in order to model in vitro experiments of fibrillation. We investigate the interplay between four processes: nucleation, polymerization, depolymerization and fragmentation. We first revisit the well-known Lifshitz–Slyozov model, which takes into account only polymerization and depolymerization, and we show that, when nucleation is included, the system goes to a trivial equilibrium: all polymers fragmentize, going back to very small polymers. Taking into account only polymerization and fragmentation, modeled by the classical growth-fragmentation equation, also leads the system to the same trivial equilibrium, whether or not nucleation is considered. Finally, when taking into account a depolymerization reaction term, we prove the existence of a steady size-distribution of polymers, as soon as polymerization dominates depolymerization for large sizes whereas depolymerization dominates polymerization for smaller ones—a case which fits the classical assumptions for the Lifshitz–Slyozov equations, but complemented with fragmentation so that “Ostwald ripening” does not happen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Marie Doumic was supported and Juan Calvo was partially supported by the ERC Starting Grant SKIPPERAD (Number 306321). Juan Calvo also acknowledges support from ``Plan Propio de Investigación, programa 9'' (funded by Universidad de Granada and european FEDER funds), Projects MTM2014-53406-R, MTM2015-71509-C2-1-R (funded by MINECO and european FEDER funds) and Project P12-FQM-954 (funded by Junta de Andalucía). Benoît Perthame was supported by the ERC Advanced Grant Adora (740623). We thank Romain Yvinec and Wei-Feng Xue for inspiring discussions.

References

  1. 1.
    Ball J.M., Carr J., Penrose O.: The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Becker R., Döring W.: Kinetische behandlung der keimbildung in bersttigten dmpfen. Annal. Phys. 416(8), 719–752 (1935)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Bishop M.F., Ferrone F.A.: Kinetics of nucleation-controlled polymerization. a perturbation treatment for use with a secondary pathway. Biophys. J. 46(5), 631–644 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    Calvez V., Doumic M., Gabriel P.: Self-similarity in a general aggregation fragmentation problem. application to fitness analysis. J. Math. Pures Appl. 98(1), 1–27 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Calvez V., Lenuzza N., Doumic M., Deslys J.-P., Mouthon F., Perthame B.: Prion dynamic with size dependency—strain phenomena. J. Biol. Dyn. 4(1), 28–42 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Collet J.-F., Goudon T., Poupaud F., Vasseur A.:: The Becker–Döring system and its Lifshitz–Slyozov limit. SIAM J. Appl. Math. 62(5), 1488–1500 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Collet J.-F., Goudon T.: On solutions of the Lifshitz–Slyozov model. Nonlinearity 13(4), 1239–1262 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Collet J.-F., Goudon T., Vasseur A.: Some remarks on large-time asymptotic of the Lifshitz–Slyozov equations. J. Stat. Phys. 108(1–2), 341–359 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Collet J.F., Hariz S.: A modified version of the Lifshitz–Slyozov model. Appl. Math. Lett. 12, 81–95 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Deschamps J., Hingant E., Yvinec R.: Quasi steady state approximation of the small clusters in becker–döring equations leads to boundary conditions in the lifshitz–slyozov limit. Commun. Math. Sci. 15(5), 1353–1384 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Doumic M., Gabriel P.: Eigenelements of a general aggregation-fragmentation model. Math. Models Methods Appl. Sci. 20(05), 757 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Doumic M., Goudon T., Lepoutre T.: Scaling limit of a discrete prion dynamics model. Commun. Math. Sci. 7(4), 839–865 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Escobedo M., Mischler S., Perthame B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231(1), 157–188 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Filbet F., Laurençot P.: Numerical approximation of the Lifshitz––Slyozov––Wagner equation. SIAM J. Numer. Anal. 41(2), 563–588 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gabriel, P.: Global stability for the prion equation with general incidence (January 2015)Google Scholar
  16. 16.
    Greer M.L., Pujo-Menjouet L., Webb G.F.: A mathematical analysis of the dynamics of prion proliferation. J. Theor. Biol. 242(3), 598–606 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Laurençot P.: Weak solutions to the Lifshitz–Slyozov–Wagner equation. Indiana Univ. Math. J. 50, 1319–1346 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Laurençot P., Walker C.: Well-posedness for a model of prion proliferation dynamics. J. Evol. Equ. 7(2), 241–264 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Laurençot P.: Steady states for a fragmentation equation with size diffusion. Banach Center Publ. 66, 211–219 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lifshitz I.M., Slyozov V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(12), 35–50 (1961)ADSCrossRefGoogle Scholar
  21. 21.
    Michel P.: Optimal proliferation rate in a cell division model. Math. Model. Nat. Phenom. 1(2), 23–44 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Michel P.: A singular asymptotic behavior of a transport equation. C.R. Acad. Sci. Paris 346, 155–159 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Niethammer B.: Derivation of the LSW-theory for Ostwald ripening by homogenization methods. Arch. Ration. Mech. Anal. 147(2), 119–178 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Niethammer B., Pego R.L.: Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat. Phys. 95(5-6), 867–902 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Niethammer B., Pego RL.: On the initial-value problem in the Lifshitz–Slyozov–Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31(3), 467–485 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Niethammer B., Pego R.L.: The LSW model for domain coarsening: asymptotic behavior for conserved total mass. J. Stat. Phys. 104(5-6), 1113–1144 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Niethammer B., Velázquez J.J.L.: On the convergence to the smooth self-similar solution in the LSW model. Indiana Univ. Math. J. 55(2), 761–794 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Penrose O.: Metastable states for the Becker–Döring cluster equations. Commun. Math. Phys. 124(4), 515–541 (1989)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Perthame B.: Transport Equations in Biology Frontiers in Mathematics. Birkhäuser, Basel (2007)zbMATHGoogle Scholar
  30. 30.
    Prigent, S., Ballesta, A., Charles, F., Lenuzza, N., Gabriel, P., Tine, L.M., Rezaei, H., Doumic, M.: An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation. PLoS ONE 7(11):e43273, 11 (2012)Google Scholar
  31. 31.
    Pruss J., Pujo-Menjouet L., Webb G.F., Zacher R.: Analysis of a model for the dynamics of prion. Discrete Contin. Dyn. Syst. Ser. B 6(1), 225–235 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Simonett G., Walker C.: On the solvability of a mathematical model for prion proliferation. J. Math. Anal. Appl. 324(1), 580 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Xue W.-F., Homans S.W., Radford S.E.: Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. PNAS 105, 8926–8931 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada and Excellence Research Unit “Modeling Nature” (MNat)Universidad de GranadaGranadaSpain
  2. 2.Sorbonne Université, Inria, Université Paris-Diderot, CNRS, Laboratoire Jacques-Louis LionsParisFrance

Personalised recommendations