Advertisement

Communications in Mathematical Physics

, Volume 362, Issue 3, pp 827–854 | Cite as

Braided Tensor Categories of Admissible Modules for Affine Lie Algebras

  • Thomas Creutzig
  • Yi-Zhi Huang
  • Jinwei Yang
Article
  • 41 Downloads

Abstract

Using the tensor category theory developed by Lepowsky, Zhang and the second author, we construct a braided tensor category structure with a twist on a semisimple category of modules for an affine Lie algebra at an admissible level. We conjecture that this braided tensor category is rigid and thus is a ribbon category. We also give conjectures on the modularity of this category and on the equivalence with a suitable quantum group tensor category. In the special case that the affine Lie algebra is \({\widehat{\mathfrak{sl}}_2}\), we prove the rigidity and modularity conjectures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

T. C. is supported by the Natural Sciences and Engineering Research Council of Canada (RES0020460). J. Y. is supported in part by an AMS-Simons travel Grant. J. Y. also wants to thank Zongzhu Lin for useful conversations.

References

  1. ACL.
    Arakawa, T., Creutzig, T., Linshaw, A.: W-algebras as coset vertex algebras. arXiv:01801.03822
  2. ACR.
    Auger, J., Creutzig, T., Ridout, D.: Modularity of logarithmic parafermion vertex algebras. Lett. Math. Phys. 1–45 (2018). arXiv:1704.05168
  3. Ad1.
    Adamović D.: Some rational vertex algebras. Glas. Mat. Ser. III 29, 25–40 (1994)MathSciNetzbMATHGoogle Scholar
  4. Ad2.
    Adamović D.: A construction of admissible A 1(1) modules of level −4/3. J. Pure Appl. Algebra 196, 119–134 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. AK.
    Arakawa, T., Kawasetsu, K.: Quasi-lisse vertex algebras and modular linear differential equations. arXiv:1610.05865
  6. AL.
    Axtell J., Lee K.-H.: Vertex operator algebras associated to type G affine Lie algebras. J. Algebra 337, 195–223 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. AM.
    Adamović D., Milas A.: Vertex operator algebra associated to modular invariant representations for A 1(1). Math. Res. Lett. 2, 563–575 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ar.
    Arakawa T.: Rationality of admissible affine vertex algebras in the category \({\theta}\). Duke Math. J. 165, 67–93 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. AY.
    Awata H., Yamada Y.: Fusion rules for the fractional level \({\widehat{\mathfrak{sl}}_2 (2,\mathbb{C}}\)) algebra. Mod. Phys. Lett. A 7, 1185 (1992)ADSCrossRefzbMATHGoogle Scholar
  10. B.
    Bruguières A.: Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann. 316(2), 215–236 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. B–vR.
    Beem C., Lemos M., Liendo P., Peelaers W., Rastelli L., vanReesBalt C.: Infinite chiral symmetry in four dimensions. Commun. Math. Phys. 336(3), 1359–1433 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. BF.
    Bernard D., Felder G.: Fock representations and BRST cohomology in SL(2) current algebra. Commun. Math. Phys. 127, 145–168 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. BFM.
    Beilinson, A., Feigin, B., Mazur, B.: Introduction to algebraic field theory on curves, preprint, (1991)Google Scholar
  14. BK.
    Bakalov B., Kirillov A Jr.: Lectures on tensor categories and modular functors University Lecture Series, vol. 21. Am. Math. Soc., Providence, RI (2001)zbMATHGoogle Scholar
  15. BPZ.
    Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Phys. B 241, 333–380 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. BR.
    Beem, C., Rastelli, L.: Vertex operator algebras, Higgs branches, and modular differential equations. arXiv:1707.07679
  17. CG.
    Creutzig, T., Gaiotto, D.: Vertex algebras for S-duality. arXiv:1708.00875
  18. CKL.
    Creutzig, T., Kanade, S., Linshaw, A.: Simple current extensions beyond semi-simplicity. arXiv:1511.08754
  19. CKLR.
    Creutzig, T., Kanade, S., Linshaw, A.R., Ridout, D.: Schur-Weyl Duality for Heisenberg Cosets, to appear in Transformation Groups, arXiv:1611.00305
  20. CKM.
    Creutzig, T., McRae, R., Kanade, S.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017
  21. CMR.
    Creutzig, T., Milas, A., Rupert, M.: Logarithmic link invariants of \({\bar{u}^{H}_{q}(\mathfrak{sl}_{2}})\) and asymptotic dimensions of singlet vertex algebras. J. Pure Appl. Algebra 222, 3224–3247 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. CR1.
    Creutzig T., Ridout D.: Modular data and verlinde formulae for fractional level WZW models I. Nucl. Phys. B 865, 83–114 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. CR2.
    Creutzig T., Ridout D.: Modular data and verlinde formulae for fractional level WZW models II. Nucl. Phys. B 875, 423–458 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. CRW.
    Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic (1, p) models. Lett. Math. Phys. 104, 553–583 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. DLM.
    Dong C., Li H., Mason G.: Vertex operator algebras associated to admissible representations of \({\widehat{\mathfrak{sl}(2,\mathbb{C})}}\). Commun. Math. Phys. 184, 65–93 (1997)ADSCrossRefGoogle Scholar
  26. EGNO.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, vol. 205. American Mathematical Society, Providence, RI (2015)zbMATHGoogle Scholar
  27. Fa.
    Faltings G.: A proof for the Verlinde formula. J. Algebra Geom. 3, 347–374 (1994)MathSciNetzbMATHGoogle Scholar
  28. FHL.
    Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. In: Memoirs of the American Mathematical Society, vol. 104, p. 494. American Mathematical Society, Providence (1993) (preprint, 1989)Google Scholar
  29. Fi1.
    Finkelberg, M.: Fusion categories, Ph.D. thesis, Harvard University, (1993)Google Scholar
  30. Fi2.
    Finkelberg M.: An equivalence of fusion categories. Geom. Funct. Anal. 6, 249–267 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Fi3.
    Finkelberg M.: Erratum to: An Equivalence of Fusion Categories. Geom. Funct. Anal. 23, 810–811 (2013)MathSciNetCrossRefGoogle Scholar
  32. FM.
    Feigin, B., Malikov, F.: Modular functor and representation theory of \({\widehat{\mathfrak{sl}}_2}\) at a rational level, In: Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, pp. 357–405. American Mathematical Society, Providence (1997)Google Scholar
  33. FrM.
    Frenkel, I.B., Malikov, F.: Kazhdan–Lusztig tensoring and Harish–Chandra categories, arXiv:q-alg/9703010
  34. FZ.
    Frenkel I.B., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  35. G.
    Gaberdiel M.: Fusion rules and logarithmic representations of a WZW model at fractional level. Nucl. Phys. B618, 407–436 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. GK.
    Gorelik M., Kac V.: On complete reducibility for infinite-dimensional Lie algebras. Adv. Math. 262(2), 1911–1972 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. H.
    Huang Y.-Z.: Two-dimensional conformal field theory and vertex operator algebra Progress in Math., 148. Birkhäuser,, Boston (1997)Google Scholar
  38. H2.
    Huang Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure. Appl. Algebra 100, 173–216 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  39. H3.
    Huang Y.-Z.: Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Algebra 182, 201–234 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  40. H4.
    Huang Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375–400 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  41. H5.
    Huang Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. H6.
    Huang Y.-Z.: Rigidity and modularity of vertex tensor categories. Commun. Contemp. Math. 10, 871–911 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  43. H7.
    Huang, Y.-Z.: On the applicability of logarithmic tensor category theory, arXiv:1702.00133
  44. HKL.
    Huang Y.-Z., Kirillov A., Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337, 1143–1159 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. HL1.
    Huang, Y.-Z., Lepowsky, J.: Toward a theory of tensor products for representations of a vertex operator algebra. In: Catto, S., Rocha, A. (eds.), Proceedings of the 20th Internatinal Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991, World Scientific, Singapore, vol. 1, pp. 344–354 (1992)Google Scholar
  46. HL2.
    Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L., Guillemin, V., Kac, V. (eds.), Lie Theory and Geometry, in Honor of Bertram Konstant, Birkhäuser, Boston, pp. 349–383 (1994)Google Scholar
  47. HL3.
    Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Mathematica, New Series 1, 699–756 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  48. HL4.
    Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Mathematica, New Series 1, 757–786 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  49. HL5.
    Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure. Appl. Algebra 100, 141–171 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  50. HL6.
    Huang, Y.-Z., Lepowsky, J.: A theory of tensor products for module categories for a vertex operator algebra, V (to appear)Google Scholar
  51. HL7.
    Huang Y.-Z., Lepowsky J.: Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J. 99, 113–134 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  52. HLZ1.
    Huang Y.-Z., Lepowsky J., Zhang L.: A logarithmic generalization of tensor product theory for modules for a vertex operator algebra. Int. J. Math. 17, 975–1012 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  53. HLZ2.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. I: Introduction and strongly graded algebras and their generalized modules. In: Bai, C., Fuchs, J., Huang, Y.-Z., Kong, L., Runkel, I., Schweigert, C. (eds.), Conformal Field Theories and Tensor Categories, Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, Mathematical Lectures from Beijing University, vol. 2, pp. 169–248. Springer, New York (2014)Google Scholar
  54. HLZ3.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196
  55. HLZ4.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197
  56. HLZ5.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. IV: Construction of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198
  57. HLZ6.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199
  58. HLZ7.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms, arXiv:1012.4202
  59. HLZ8.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929
  60. HLZ9.
    Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor category theory for generalized modules for a conformal vertex algebra. VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931
  61. HY.
    Huang Y.-Z., Yang J.: Logarithmic intertwining operators and associative algebras. J. Pure Appl. Algebra 216, 1467–1492 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  62. IK.
    Iohara K., Koga Y.: Representation Theory of the Virasoro Algebra Springer Monographs in Mathematics. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  63. K.
    Knapp A.W.: Representation Theory of Semisimple Groups. Princeton University Press, Princeton (1986)CrossRefzbMATHGoogle Scholar
  64. KL1.
    Kazhdan D., Lusztig G.: Affine Lie algebras and quatum groups. Int. Math. Res. Not. (in Duke Math. J.) 2, 21–29 (1991)CrossRefzbMATHGoogle Scholar
  65. KL2.
    Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, I. J. Am. Math.Soc. 6, 905–947 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  66. KL3.
    Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  67. KL4.
    Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  68. KL5.
    Kazhdan D., Lusztig G.: Tensor structure arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  69. KO.
    Kirillov A Jr., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}_{2}}\) conformal field theories. Adv. Math. 171, 183–227 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  70. KW1.
    Kac V.G., Wakimoto M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956–4960 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. KW2.
    Kac, V.G., Wakimoto, M.: Classification of modular invariant representations of affine algebras. In: Kac, V.G. (ed.) Infinite-Dimensional Lie Algebras and Groups, Proceedings of the Conference Held at CIRM, Luminy (1988)Google Scholar
  72. KZ.
    Knizhnik V., Zamolodchikov A.: Current algebra and Wess–Zumino models in two dimensions. Nuclear Phys. B 247, 83–103 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. Li1.
    Li H.S.: An analogue of the Homfunctor and a generalized nuclear democracy theorem. Duke Math. J. 93, 73–114 (1998)MathSciNetCrossRefGoogle Scholar
  74. Li2.
    Li H.S.: Determining fusion rules by A(V)-modules and bimodules. J. Algebra 212, 515–556 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  75. M.
    Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras. In: Berman, S., Fendley, P., Huang, Y.-Z., Misra, K., Parshall, B. (eds.), Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, Contemporary Mathematics, vol. 297, pp. 201–225. American Mathematical Society, Providence (2002)Google Scholar
  76. Mc.
    McRae R.: Non-negative integral level affine Lie algebra tensor categories and their associativity isomorphism. Commun. Math. Phys. 346, 349–395 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. MS.
    Moore G., Seiberg N.: Classical and quatum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989)ADSCrossRefzbMATHGoogle Scholar
  78. OS.
    Ostrik V., Sun M.: Level-rank duality via tensor categories. Commun. Math. Phys. 326, 49–61 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. P1.
    Perše O.: Vertex operator algebras associated to type B affine Lie algebras on admissible half-integer levels. J. Algebra 307, 215–248 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  80. P2.
    Perše O.: Vertex operator algebras associated to certain admissible modules for affine Lie algebras of type A. Glas. Mat. Ser. III 43, 41–57 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  81. R1.
    Ridout D.: Fusion in fractional level \({\mathfrak{sl}{(2)}}\) -theories with k = −2. Nucl. Phys. B 848, 216–250 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. R2.
    Ridout D.: \({\mathfrak{sl}{(2)}_{-1/2}}\) and the Triplet Model. Nucl. Phys. B 835, 314–342 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. R3.
    Ridout D.: \({\mathfrak{sl}{(2)}_{-1/2}}\): a case study. Nucl. Phys. B 814, 485–521 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. RW.
    Ridout D., Wood S.: Relaxed singular vectors, Jack symmetric functions and fractional level \(\widehat{\mathfrak{sl}}(2)\)models. Nucl. Phys. B 894, 621–664 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. S.
    Sawin S.F.: Quantum groups at roots of unity and modularity. J. Knot Theory Ramif. 15(10), 1245–1277 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  86. Te.
    Teleman C.: Lie algebra cohomology and the fusion rules. Commum. Math. Phys. 173, 265–311 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. TK.
    Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on P 1 and monodromy representations of braid group. In: Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math. vol. 16, pp. 297–372. Academic Press, Boston (1988)Google Scholar
  88. Tu.
    Turaev V.: Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Math. Vol. 18. Walter de Gruyter, Berlin (1994)Google Scholar
  89. W.
    Wang W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 1993, 197–211 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  90. Y1.
    Yang, J.: Some results in the representation theory of strongly graded vertex algebras, Ph.D. thesis, Rutgers University (May 2014)Google Scholar
  91. Y2.
    Yang J.: Differential equations and logarithmic intertwining operators for strongly graded vertex algebra. Commun. Contempt. Math. 19(2), 1650009 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  92. Z.
    Zhu Y.-C.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–307 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  93. Zh.
    Zhang L.: Vertex tensor category structure on a category of Kazhdan–Lusztig.N.Y. J. Math. 14, 261–284 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsRutgers UniversityPiscatawayUSA
  3. 3.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations