Advertisement

Communications in Mathematical Physics

, Volume 363, Issue 2, pp 503–530 | Cite as

Noncommutative Painlevé Equations and Systems of Calogero Type

  • M. Bertola
  • M. Cafasso
  • V. Rubtsov
Article

Abstract

All Painlevé equations can be written as a time-dependent Hamiltonian system, and as such they admit a natural generalization to the case of several particles with an interaction of Calogero type (rational, trigonometric or elliptic). Recently, these systems of interacting particles have been proved to be relevant in the study of \({\beta}\)-models. An almost two-decade-old open question by Takasaki asks whether these multi-particle systems can be understood as isomonodromic equations, thus extending the Painlevé correspondence. In this paper we answer in the affirmative by displaying explicitly suitable isomonodromic Lax pair formulations. As an application of the isomonodromic representation, we provide a construction based on discrete Schlesinger transforms, to produce solutions for these systems for special values of the coupling constants, starting from uncoupled ones; the method is illustrated for the case of the second Painlevé equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank P. Boalch for pointing out the relations between this work and his article [5], and G. Rembado for some interesting discussions on the deformation quantization of simply laced isomonodromy systems. The three authors acknowledge the support of the project IPaDEGAN (H2020-MSCA-RISE-2017), Grant Number 778010. The research of M.B. was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant RGPIN-2016-06660 and by the FQRNT grant “Applications des systèmes intégrables aux surfaces de Riemann et aux espaces de modules”. The research of M.C. and V.R. was partially supported by a project “Nouvelle équipe” funded by the region Pays de la Loire. V. R. acknowledges the support of the Russian Foundation for Basic Research under the Grants RFBR 18-01-00461 and 16-51-53034-GFEN. M.C. and V.R. thank the Centre “Henri Lebesgue” ANR-11-LABX-0020-01 for creating an attractive mathematical environment. They also thank the International School of Advanced Studies (SISSA) in Trieste for the hospitality during part of the preparation of this work.

References

  1. 1.
    Bertola M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertola M., Cafasso M.: Fredholm determinants and pole-free solutions to the noncommutative Painleve’ II equation. Commun. Math. Phys. 309(3), 793–833 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertola M., Cafasso M.: Darboux transformations and random point processes. Int. Math. Res. Notices 15, 6211–6266 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probability Theory and Related Fields, 156 (2013)Google Scholar
  5. 5.
    Boalch P.: Simply-laced isomonodromy systems. Publications mathmatiques de l’IHS 116(1), 1–68 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp., P11024 (2011)Google Scholar
  7. 7.
    Flaschka H., Newell A.C.: Monodromy- and spectrum-preserving deformations. I. Commun. Math. Phys. 76(1), 65–116 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents, Volume 128 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, The Riemann–Hilbert approach (2006)Google Scholar
  9. 9.
    Inozemtsev V.I.: Lax representation with spectral parameter on a torus for integrable particle systems. Lett. Math. Phys. 17, 11–17 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ito, T., Terwilliger, P.: Double affine Hecke algebras of rank 1 and the \({\mathbb{Z}_3}\)-symmetric Askey-Wilson relations. SIGMA Symmetry Integrability Geom. Methods Appl., 6:Paper 065, 9 (2010)Google Scholar
  11. 11.
    Jimbo M., Miwa T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2(3), 407–448 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jimbo M., Miwa T., Ueno K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and \({\tau}\)-function. Physica D 2(2), 306–352 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y.: Cubic pencils and Painlevé Hamiltonians. Funkc. Ekvac. 48(1), 147–160 (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kawakami H.: Matrix Painlevé systems. J. Math. Phys. 56(3), 033503 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kawakami, H.: Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems. arXiv:1608.03927 (2016)
  16. 16.
    Kazhdan D., Kostant B., Sternberg S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math. 31(4), 481–507 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Krichever I.: On rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particles on the line. Funct. Anal. Appl. 12, 1 (1978)CrossRefzbMATHGoogle Scholar
  18. 18.
    Levin, A.M. Olshanetsky, M.A.: Painlevé–Calogero Correspondence. In Calogero-Moser-Sutherland Models, CRM Series in Mathematical Physics. CRM (2000)Google Scholar
  19. 19.
    Manin, Y.I.: Rational curves, elliptic curves, and the Painlevé equation. In: Surveys in Modern Mathematics, vol. 321 of London Mathematical Society Lecture Note Series, pp. 24–33. Cambridge University Press, Cambridge (2005)Google Scholar
  20. 20.
    Mazzocco, M., Rubtsov, V.: Confluence on the Painlevé Monodromy Manifolds, their Poisson Structure and Quantisation. (2012). arXiv:1212.6723
  21. 21.
    Mazzocco M.: Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme. Nonlinearity 29(9), 2565–2608 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Okamoto K.: Polynomial Hamiltonians associated with Painlevé equations, I. Proc. Jpn. Acad. Ser. A Math. Sci., 56(6), 264–268 (1980)CrossRefzbMATHGoogle Scholar
  23. 23.
    Okamoto K.: Sur les feuilletages associés aux équations du second ordre à à points critiques fixes de P. Painlevé. Jpn. J. Math. (N.S.) 5(1), 1–79 (1979)CrossRefzbMATHGoogle Scholar
  24. 24.
    Painlevé P.: Sur les équations différentielles du second ordre à à points critiques fixés. C.R. Acad. Sci (Paris) 143, 1111–1117 (1906)zbMATHGoogle Scholar
  25. 25.
    Rembado, G.: Simply-laced quantum connections generalising KZ. (2017). arXiv:1704.08616
  26. 26.
    Reshetikhin N.: The Knizhnik–Zamolodchikov system as a deformation of the isomonodromy problem. Lett. Math. Phys. 26(3), 167–177 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Retakh V., Rubtsov V.: Noncommutative Toda Chains, Hankel Quasideterminants and Painlevé II Equation. J. Phys. A Math. Theor., 43 505204 (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Rumanov I.: Classical integrability for beta-ensembles and general Fokker-Planck equations. J. Math. Phys., 56(1), 013508 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shioda T., Takano K.: On some Hamiltonian structures of Painlevé systems. I. Funkc. Ekvac. 40(2), 271–291 (1997)zbMATHGoogle Scholar
  30. 30.
    Takasaki K.: Painlevé–Calogero correspondence revisited. J. Math. Phys. 42(3), 1443–1473 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    van der Put M., Saito M.-H.: Moduli spaces for linear differential equations and the Painlevé equations. Ann. Inst. Fourier (Grenoble) 59(7), 2611–2667 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wasow, W.: Asymptotic expansions for ordinary differential equations. Dover Publications Inc., New York, Reprint of the 1976 edition (1987)Google Scholar
  34. 34.
    Wilson G.: Collisions of Calogero–Moser particles and an adelic Grassmannian. Invent. Math. 133(1), 1–41 (1998) (With an appendix by I. G. Macdonald)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zabrodin A., Zotov A.: Quantum Painlevé–Calogero correspondence. J. Math. Phys. 53(7), 073507 (2012) 19ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zabrodin A., Zotov A.: Quantum Painlevé–Calogero correspondence for Painlevé VI. J. Math. Phys. 53(7), 073508 (2012) 19ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontrealCanada
  2. 2.SISSA/ISASTriesteItaly
  3. 3.Centre de recherches mathématiquesUniversité de MontréalMontrealCanada
  4. 4.LAREMAUniversité d’AngersAngersFrance
  5. 5.ITEP, Theory DivisionMoscowRussia

Personalised recommendations