Communications in Mathematical Physics

, Volume 362, Issue 3, pp 855–907 | Cite as

Renormalized Hennings Invariants and 2 + 1-TQFTs

  • Marco De Renzi
  • Nathan GeerEmail author
  • Bertrand Patureau-Mirand


We construct non-semisimple 2 + 1-TQFTs yielding mapping class group representations in Lyubashenko’s spaces. In order to do this, we first generalize Beliakova, Blanchet and Geer’s logarithmic Hennings invariants based on quantum \({\mathfrak{sl}_2}\) to the setting of finite-dimensional non-degenerate unimodular ribbon Hopf algebras. The tools used for this construction are a Hennings-augmented Reshetikhin–Turaev functor and modified traces. When the Hopf algebra is factorizable, we further show that the universal construction of Blanchet, Habegger, Masbaum and Vogel produces a 2 + 1-TQFT on a not completely rigid monoidal subcategory of cobordisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu Y., Deguchi T., Ohtsuki T.: Invariants of colored links. J. Knot Theory Ramif. 1(2), 161–184 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atiyah M.: Topological quantum field theory. Publ. Mathématiques de l’IHÉS 68, 175–186 (1988)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beliakova, A., Blanchet, C., Geer, N.: Logarithmic Hennings Invariants for Restricted Quantum \({\mathfrak{sl}}\)(2). arXiv:1705.03083 [math.GT]
  4. 4.
    Beliakova, A., Blanchet, C., Gainutdinov, A.: Modified Trace is a Symmetrised Integral. arXiv:1801.00321 [math.QA]
  5. 5.
    Blanchet C., Costantino F., Geer N., Patureau-Mirand B.: Non-semisimple TQFTs, reidemeister Torsion and Kashaev’s invariants. Adv. Math. 301(1), 1–78 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blanchet C., Habegger N., Masbaum G., Vogel P.: Topological quantum field theories derived from the Kauffman bracket. Topology 34(4), 883–927 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bushlanov P., Gainutdinov A., Tipunin I.: Kazhdan–Lusztig equivalence and fusion of Kac modules in Virasoro Logarithmic Models. Nucl. Phys. B 862(1), 232–269 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bushlanov P., Feigin B., Gainutdinov A., Tipunin I.: Lusztig limit of quantum \({\mathfrak{sl}}\)(2) at root of unity and fusion of (1, p) Virasoro Logarithmic Minimal Models. Nucl. Phys. B 818(3), 179–195 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chari V., Pressley A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  10. 10.
    Cohen M., Westreich S.: Characters and a verlinde-type formula for symmetric Hopf algebras. J. Algebra 320, 4300–4316 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Costantino F., Geer N., Patureau-Mirand B.: Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol. 7(4), 1005–1053 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Creutzig T., Ridout D., Wood S.: Coset constructions of logarithmic (1, p) models. Lett. Math. Phys. 104(5), 553–583 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    De Renzi, M.: Non-semisimple Extended Topological Quantum Field Theories. arXiv: 1703.07573 [math.GT]
  14. 14.
    Drinfeld V.: Quantum groups. J. Sov. Math. 41(2), 898–915 (1988)CrossRefGoogle Scholar
  15. 15.
    Drinfeld, V.: Almost cocommutative Hopf algebras. Algebra i Analiz 1(2), 30–46 (1989) (English Translation in Leningrad Math. J. 1(2), 321–342 (1990)Google Scholar
  16. 16.
    Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs, Volume 205, American Mathematical Society (2015)Google Scholar
  17. 17.
    Feigin B., Gainutdinov A., Semikhatov A., Tipunin I.: Modular group representations and fusion in logarithmic Conformal field theories and in the Quantum Group Center. Commun. Math. Phys. 265(1), 47–93 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Frohman, C., Nicas, A.: The Alexander Polynomial via Topological Quantum Field Theory. Differential Geometry, Global Analysis, and Topology, Canadian Mathematical Society Conference Proceedings, Volume 12, American Mathematical Society, Providence, Rhode Island, pp. 27–40 (1992)Google Scholar
  19. 19.
    Fuchs J., Hwang S., Semikhatov A., Tipunin I.: Nonsemisimple fusion algebras and the Verlinde Formula. Commun. Math. Phys. 247(3), 713–742 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fuchs J., Runkel I., Schweigert C.: Twenty five years of two-dimensional rational conformal field theory. J. Math. Phys. 51(1), 015210 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fuchs J., Schweigert C.: Hopf algebras and finite tensor categories in conformal field theory. Revista de la Unión Matemática Argentina 51(2), 43–90 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Fuchs J., Schweigert C.: Consistent systems of correlators in non-semisimple conformal field theory. Adv. Math. 307(5), 598–639 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fuchs J., Schweigert C., Stigner C.: From non-semisimple Hopf algebras to correlation functions for logarithmic CFT. J. Phys. A Math. Theor. 46(49), 494008 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Fuchs J., Schweigert C., Stigner C.: Higher genus mapping class group invariants from factorizable Hopf algebras. Adv. Math. 250(15), 285–319 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gainutdinov, A., Runkel, I.: The Non-semisimple Verlinde Formula and Pseudo-Trace Functions. arXiv:1605.04448 [math.QA]
  26. 26.
    Gainutdinov, A., Runkel, I.: Projective Objects and the Modified Trace in Factorisable Finite Tensor Categories. arXiv:1703.00150 [math.QT]
  27. 27.
    Gainutdinov, A., Semikhatov, A., Tipunin, I., Feigin, B.: The Kazhdan–Lusztig Correspondence for the Representation Category of the Triplet W-Algebra in Logorithmic Conformal Field Theories. Teoreticheskaya i Matematicheskaya Fizika 148(3), September 2006, pp 398–427 (Russian). Theor. Math. Phys. 148(3), 1210–1235 (English Translation) (2006)Google Scholar
  28. 28.
    Geer N., Kujawa J., Patureau-Mirand B.: Generalized trace and modified dimension functions on ribbon categories. Selecta Mathematica 17(2), 435–504 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Geer N., Kujawa J., Patureau-Mirand B.: Ambidextrous objects and trace functions for nonsemisimple categories. Proc. Am. Math. Soc. 141, 2963–2978 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Geer N., Patureau-Mirand B., Turaev V.: Modified quantum dimensions and re-normalized link invariants. Compositio Mathematica 145(1), 196–212 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Geer N., Patureau-Mirand B., Virelizier A.: Traces on ideals in pivotal categories. Quantum Topol. 4(1), 91–124 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hennings M.: Invariants of links and 3-manifolds obtained from Hopf algebras. J. Lond. Math. Soc. 54(3), 594–624 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kauffman L., Radford D.: A necessary and sufficient condition for a finite-dimensional Drinfel’d double to be a ribbon Hopf algebra. J. Algebra 159(1), 98–114 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kauffman L., Radford D.: Invariants of 3-manifolds derived from finite-dimensional Hopf algebras. J. Knot Theory Ramif. 4(1), 131–162 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kerler T.: Mapping class group actions on quantum doubles. Commun. Math. Phys. 168(2), 353–388 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kerler, T.: Genealogy of Nonperturbative Quantum-Invariants of 3-Manifolds: The Surgical Family. Geometry and Physics, Lecture Notes in Pure and Applied Mathematics, Vol. 184, Marcel Dekker, pp. 503–547 (1996)Google Scholar
  37. 37.
    Kerler T.: On the connectivity of cobordisms and half-projective TQFT’s. Commun. Math. Phys. 198(3), 535–590 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Kerler T.: Homology TQFT’s and the Alexander–Reidemeister invariant of 3-manifolds via Hopf algebras and Skein Theory. Can. J. Math. 55(4), 766–821 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kerler, T., Lyubashenko, V.: Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners. Lecture Notes in Mathematics, Volume 1765. Springer, Berlin, Heidelberg (2001)Google Scholar
  40. 40.
    Klimyk A., Schmüdgen K.: Quantum Groups and Their Representations. Springer, Berlin, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  41. 41.
    Lentner S., Nett D.: New R-matrices for small quantum groups. Algeb. Represent. Theory 18(6), 1649–1673 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lentner S., Ohrmann T.: Factorizable R-matrices for small quantum groups. SIGMA 13(076), 1–25 (2017)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Lusztig G.: Quantum groups at roots of 1. Geometriae Dedicata 35(1–3), 89–113 (1990)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Lyubashenko V.: Modular transformations for tensor categories. J. Pure Appl. Algebra 98(3), 279–327 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lyubashenko V.: Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity. Commun. Math. Phys. 172(3), 467–516 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Lyubashenko V., Majid S.: Braided groups and quantum fourier transform. J. Algebra 166(3), 506–528 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Mathematics, vol. 82 (1993)Google Scholar
  48. 48.
    Murakami, J.: From colored jones invariants to logarithmic invariants. Tokyo J. Math. (2018). arXiv:1406.1287 [math.GT]
  49. 49.
    Murakami J.: Generalized Kashaev invariants for knots in three manifolds. Quantum Topol. 8(1), 35–73 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Majid S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  51. 51.
    Majid, S.: Quasitriangular Hopf algebras and Yang=-Baxter equations. Int. J. Mod. Phys. A Part. Fields Gravit. Cosmol. 5(1), 1–91 (1990)Google Scholar
  52. 52.
    Negron, C.: Small Quantum Groups Associated to Belavin-Drinfeld Triples. arXiv: 1701.00283 [math.RT]
  53. 53.
    Ohtsuki T.: Invariants of 3-manifolds derived from universal invariants of framed links. Math. Proc. Camb. Philos. Soc. 117(2), 259–273 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Radford, D.: Hopf Algebras Series on Knots and Everything, vol. 49. World Scientific, Singapore (2011)Google Scholar
  55. 55.
    Radford D.: The antipode of a finite-dimensional Hopf algebra over a field has finite order. Bull. Am. Math. Soc. 81(6), 1103–1105 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Radford D.: Minimal quasitriangular Hopf algebras. J. Algebra 157(2), 285–315 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Reshetikhin, N., Semenov-Tian-Shansky, M.: Quantum R-matrices and factorization problems. J. Geometry Phys. 5(4), 533–550Google Scholar
  58. 58.
    Reshetikhin N., Turaev V.: Invariants of 3-manifolds via link polynomials and quantum groups. Inventiones Mathematicae 103(1), 547–597 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Rosso M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple lie algebra. Commun. Math. Phys. 117(4), 581–593 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Rosso M.: Quantum groups and quantum shuffles. Inventiones Mathematicae 133(2), 399–416 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Sweedler M.: Hopf Algebras. Benjamin, New York (1969)zbMATHGoogle Scholar
  62. 62.
    Sweedler M.: Integrals for Hopf algebras. Ann. Math. 89(2), 323–335 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Turaev V.: Quantum Invariants of Knots and 3-Manifolds. De Gruyter, Berlin, Boston (1994)zbMATHGoogle Scholar
  64. 64.
    Virelizier A.: Kirby elements and quantum invariants. Proc. Lond. Math. Soc. 93(2), 474–514 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marco De Renzi
    • 1
  • Nathan Geer
    • 2
    Email author
  • Bertrand Patureau-Mirand
    • 3
  1. 1.Université Paris Diderot - Paris 7, Sorbonne Paris Cité, IMJ-PRG, UMR 7586 CNRSParisFrance
  2. 2.Mathematics and StatisticsUtah State UniversityLoganUSA
  3. 3.Univ. Bretagne - Sud, UMR 6205, LMBAVannesFrance

Personalised recommendations