Advertisement

Communications in Mathematical Physics

, Volume 365, Issue 2, pp 431–470 | Cite as

Local incompressibility estimates for the Laughlin phase

  • Elliott H. Lieb
  • Nicolas Rougerie
  • Jakob YngvasonEmail author
Open Access
Article

Abstract

We prove sharp density upper bounds on optimal length-scales for the ground states of classical 2D Coulomb systems and generalizations thereof. Our method is new, based on an auxiliary Thomas–Fermi-like variational model. Moreover, we deduce density upper bounds for the related low-temperature Gibbs states. Our motivation comes from fractional quantum Hall physics, more precisely, the perturbation of the Laughlin state by external potentials or impurities. These give rise to a class of many-body wave-functions that have the form of a product of the Laughlin state and an analytic function of many variables. This class is related via Laughlin’s plasma analogy to Gibbs states of the generalized classical Coulomb systems we consider. Our main result shows that the perturbation of the Laughlin state cannot increase the particle density anywhere, with implications for the response of FQHE systems to external perturbations.

Notes

Acknowledgements

Open access funding provided by University of Vienna. We received financial support from the French ANR Project ANR-13-JS01-0005-01 (N. Rougerie) and the US NSF Grant PHY-1265118 (E. H. Lieb).

References

  1. 1.
    Almgren F.J. Jr, Lieb E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ameur, Y.: A density theorem for weighted Fekete sets. Int. Math. Res. Not. 2017(16) (2017)Google Scholar
  3. 3.
    Ameur Y.: Repulsion in low temperature \({\beta}\)-ensembles. Commun. Math. Phys. 359, 1079 (2018) arXiv:1701.04796 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ameur Y., Ortega-Cerdá J.: Beurling–Landau densities of weighted Fekete sets and correlation kernel estimates. J. Funct. Anal. 263, 1825–1861 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Anderson G.W., Guionnet A., Zeitouni O.: An Introduction to Random Matrices, vol. 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
  6. 6.
    Arovas S., Schrieffer J., Wilczek F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma (2015). arXiv:1510.02074
  8. 8.
    Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem (2016). arXiv:1609.08582
  9. 9.
    Bergholtz E.J., Liu Z.: Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. arXiv e-prints (2014)Google Scholar
  11. 11.
    Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Bonacini M., Knüpfer H., Röger M.: Optimal distribution of oppositely charged phases: perfect screening and other properties. SIAM J. Math. Anal. 48, 1128–1154 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Burchard A., Choksi R., Topaloglu I.: Nonlocal shape optimization via interactions of attractive and repulsive potentials. Indiana Univ. J. Math. 67, 375–395 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carlen E.: Some integral identities and inequalities for entire functions and their application to the coherent state transform. J. Funct. Anal. 97, 231–249 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Catto I., Le Bris C., Lions P.-L.: The Mathematical Theory of Thermodynamic Limits: Thomas–Fermi Type Models. Oxford Mathematical Monographs. The Clarendon Press Oxford, University Press, New York (1998)zbMATHGoogle Scholar
  16. 16.
    Chafaï D., Gozlan N., Zitt P.-A.: First order asymptotics for confined particles with singular pair repulsions. Ann. Appl. Probab. 24, 2371–2413 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chafaï, D., Hardy, A., Maïda, M.: Concentration for Coulomb gases and Coulomb transport inequalities (2016). arXiv:1610.00980
  18. 18.
    Ciftjá O.: Monte Carlo study of Bose Laughlin wave function for filling factors 1/2, 1/4 and 1/6. Europhys. Lett. 74, 486–492 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Ciftjá O., Wexler C.: Monte Carlo simulation method for Laughlin-like states in a disk geometry. Phys. Rev. B 67, 075304 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Cooper N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    de Picciotto R., Reznikov M., Heiblum M., Umansky V., Bunin G., Mahalu D.: Direct observation of a fractional charge. Nature 389, 162–164 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Forrester P.J.: Log-Gases and Random Matrices, vol. 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ (2010)Google Scholar
  23. 23.
    Frank, R.L., Lieb, E.H.: A ‘liquid–solid’ phase transition in a simple model for swarming, based on the ‘no flat-spots’ theorem for subharmonic functions. Indiana Univ. Math. J. (2016). arXiv:1607.07971 (in press)
  24. 24.
    Friedman A.: Variational Principles and Free-Boundary Problems. Robert E. Krieger Publishing Co., Malabar (1988)zbMATHGoogle Scholar
  25. 25.
    Girvin S.: Introduction to the fractional quantum Hall effect. Sémin. Poincaré 2, 54–74 (2004)Google Scholar
  26. 26.
    Haldane F.D.M.: Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hardy A.: A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17, 1–12 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hardy A., Kuijlaars A.: Weakly admissible vector equilibrium problems. J. Approx. Theory 164, 854–868 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jain J.K.: Composite Fermions. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Klimek M.: Pluripotential Theory. Oxford University Press, Oxford (1991)zbMATHGoogle Scholar
  31. 31.
    Laughlin R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    Laughlin, R.B.: Elementary theory: the incompressible quantum fluid. In: Prange R.E., Girvin S.E. (eds.) The quantum Hall effect. Springer, Heidelberg (1987)Google Scholar
  33. 33.
    Laughlin R.B.: Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Leblé T.: Local microscopic behavior for 2D Coulomb gases. Trans. Probab. Theory Relat. Fields 169, 931 (2017) arXiv:1510.01506 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases (2015). arXiv:1502.02970
  36. 36.
    Leblé T., Serfaty S.: Fluctuations of two-dimensional Coulomb gases. S. Geom. Funct. Anal. 28, 443 (2018) arXiv:1609.08088 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Leblé, T., Serfaty, S., Zeitouni, O., Wu, W.: Large deviations for the two-dimensional two-component plasma (2015). arXiv:1510.01955
  38. 38.
    Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lewin M., Seiringer R.: Strongly correlated phases in rapidly rotating Bose gases. J. Stat. Phys. 137, 1040–1062 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lieb E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lieb E.H., Loss M.: Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence, RI (2001)Google Scholar
  42. 42.
    Lieb, E.H., Rougerie, N., Yngvason, J.: Rigidity of the Laughlin liquid. J. Stat. Phys. (2018). arXiv:1609.03818 (in print)
  43. 43.
    Lieb E.H., Seiringer R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  44. 44.
    Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lundholm D., Rougerie N.: Emergence of fractional statistics for tracer particles in a Laughlin liquid. Phys. Rev. Lett. 116, 170401 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Marcus M., Mizel V.J.: Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Ration. Mech. Anal. 45, 294–320 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Martin J., Ilani S., Verdene B., Smet J., Umansky V., Mahalu D., Schuh D., Abstreiter G., Yacoby A.: Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Papenbrock T., Bertsch G.F.: Rotational spectra of weakly interacting Bose–Einstein condensates. Phys. Rev. A 63, 023616 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    Parameswaran S.A., Roy R., Sondhi S.L.: Fractional quantum hall physics in topological flat bands. C. R. Phys. 14, 816–839 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Petrache, M., Rota-Nodari, S.: Equidistribution of jellium energy for Coulomb and Riesz interactions (2016). arXiv:1609.03849
  51. 51.
    Petrache M., Serfaty S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 16, 501–569 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Radó T.: Subharmonic Functions. Springer, Berlin (1937)CrossRefzbMATHGoogle Scholar
  53. 53.
    Rota Nodari S., Serfaty S.: Renormalized energy equidistribution and local charge balance in 2d Coulomb systems. Int. Math. Res. Not. 11, 3035–3093 (2015)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation (2014). (LMU Lecture Notes). arXiv:1506.05263
  55. 55.
    Rougerie, N.: Some contributions to many-body quantum mathematics (2016). (Habilitation Thesis). arXiv:1607.03833
  56. 56.
    Rougerie N., Serfaty S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. 69, 519 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Rougerie N., Serfaty S., Yngvason J.: Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87, 023618 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    Rougerie N., Serfaty S., Yngvason J.: Quantum Hall phases and plasma analogy in rotating trapped Bose gases. J. Stat. Phys. 154, 2–50 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Rougerie N., Yngvason J.: Incompressibility estimates for the Laughlin phase. Commun. Math. Phys. 336, 1109–1140 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Rougerie N., Yngvason J.: Incompressibility estimates for the Laughlin phase, part II. Commun. Math. Phys. 339, 263–277 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Rougerie, N., Yngvason, J.: The Laughlin liquid in an external potential. Lett. Math. Phys. 108, 1007–1029 (2018).  https://doi.org/10.1007/s11005-017-1020-5
  62. 62.
    Saff E.B., Totik V.: Logarithmic Potentials with External Fields, vol. 316 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1997) (Appendix B by Thomas Bloom)Google Scholar
  63. 63.
    Saminadayar L., Glattli D.C., Jin Y., Etienne B.: Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997)ADSCrossRefGoogle Scholar
  64. 64.
    Sandier E., Serfaty S.: 1D log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Relat. Fields 162, 1–52 (2014)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Sandier E., Serfaty S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43, 2026–2083 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Serfaty S.: Coulomb Gases and Ginzburg–Landau Vortices. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zurich (2015)zbMATHGoogle Scholar
  67. 67.
    Serfaty, S.: Microscopic description of log and Coulomb gases (2017). arXiv:1709.04089
  68. 68.
    Serrin J., Varberg D.E.: A general chain rule for derivatives and the change of variables formula for the Lebesgue integral. Am. Math. Mon. 76, 514–520 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Störmer H., Tsui D., Gossard A.: The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Trugman S., Kivelson S.: Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B 31, 5280 (1985)ADSCrossRefGoogle Scholar
  71. 71.
    Tsui D.C., Störmer H.L., Gossard A.C.: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)ADSCrossRefGoogle Scholar
  72. 72.
    Viefers S.: Quantum Hall physics in rotating Bose–Einstein condensates. J. Phys. C 20, 123202 (2008)Google Scholar
  73. 73.
    Zhang Y., Sreejith G.J., Gemelke N.D., Jain J.K.: Fractional angular momentum in cold atom systems. Phys. Rev. Lett. 113, 160404 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  • Nicolas Rougerie
    • 2
  • Jakob Yngvason
    • 3
    • 4
    Email author
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA
  2. 2.LPMMC (UMR 5493)Université Grenoble 1 & CNRSGrenobleFrance
  3. 3.Fakultät für PhysikUniversität WienViennaAustria
  4. 4.Erwin Schrödinger Institute for Mathematical PhysicsViennaAustria

Personalised recommendations