Spatially Periodic Instantons: Nahm Transform and Moduli

  • Benoit Charbonneau
  • Jacques Hurtubise


This paper establishes that the Nahm transform sending spatially periodic instantons (instantons on the product of the real line and a three-torus) to singular monopoles on the dual three-torus is indeed a bijection as suggested by the heuristic. In the process, we show how the Nahm transform intertwines to a Fourier–Mukai transform via Kobayashi–Hitchin correspondences. We also prove existence and non-existence results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah M.F., Drinfel’d V.G., Hitchin N.J., Manin Yu.I.: Construction of instantons. Phys. Lett. A 65(3), 185–187 (1978). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Camb. Philos. Soc. 77, 43–69 (1975). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bartocci, C., Bruzzo, U., Ruipérez, D.H: Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics, volume 276 of Progress in Mathematics. Birkhäuser, Boston (2009).
  4. 4.
    Bartocci, C., Jardim, M.: Hyper-K ähler Nahm Transforms, volume 38 of CRM Proceedings and Lecture Notes, pp. 103–111. American Mathematical Society, Providence (2004). arXiv:math.DG/0312045
  5. 5.
    Bartocci, C., Jardim, M.: A Nahm transform for instantons over ALE spaces. In: Clifford Algebras (Cookeville, TN, 2002), volume 34 of Progress in Mathematical Physics, pp. 155–166. Birkhäuser, Boston (2004)Google Scholar
  6. 6.
    Biquard O.: Fibrés paraboliques stables et connexions singulières plates. Bull. Soc. Math. Fr. 119(2), 231–257 (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Biquard O.: Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse). Ann. Sci. École Norm. Sup. (4) 30(1), 41–96 (1997). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Biquard O., Jardim M.: Asymptotic behaviour and the moduli space of doubly-periodic instantons. J. Eur. Math. Soc. (JEMS) 3(4), 335–375 (2001). arXiv:math/0005154 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonsdorff, J.: A Fourier transform for Higgs bundles. PhD thesis, University of Oxford. (2002)
  10. 10.
    Bonsdorff J.: A Fourier transformation for Higgs bundles. J. Reine Angew. Math. 2006(591), 21–48 (2006). arXiv:math/0104253 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Braam P.J., van Baal P.: Nahm’s transformation for instantons. Commun. Math. Phys. 122(2), 267–280 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Charbonneau, B.: Analytic aspects of periodic instantons. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, Sept 2004.
  13. 13.
    Charbonneau B.: From spatially periodic instantons to singular monopoles. Commun. Anal. Geom. 14(1), 183–214 (2006) arXiv:math.DG/0410561 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Charbonneau, B., Hurtubise, J.: The Nahm transform for calorons. In: Prada, O.G., Bourguignon, J.-P., Salamon, S. (eds.) The Many Facets of Geometry: A Tribute to Nigel Hitchin (2010). arXiv:0705.2412
  15. 15.
    Charbonneau B., Hurtubise Jacques: Singular Hermitian–Einstein monopoles on the product of a circle and a Riemann surface. Int. Mat. Res. Not. 2011(1), 175–216 (2011). arXiv:0812.0221 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cherkis S.: Instantons on gravitons. Commun. Math. Phys. 306, 449–483 (2011). arXiv:1007.0044 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cherkis S.A.: Moduli spaces of instantons on the Taub-NUT space. Commun. Math. Phys. 290(2), 719–736 (2009). arXiv:0805.1245 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cherkis S.A.: Instantons on the Taub-NUT space. Adv. Theor. Math. Phys. 14(2), 609–641 (2010) arXiv:0902.4724 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cherkis, S.A., Durcan, B.: Singular monopoles via the Nahm transform. J. High Energy Phys. (4), 070, 9 (2008). arXiv:0712.0850
  20. 20.
    Cherkis, S.A., Hurtubise, J.: Monads for Instantons and Bows (2017). arXiv:1709.00145
  21. 21.
    Cherkis S.A., Kapustin A.: Periodic monopoles with singularities and \({\mathcal{N}=2}\) super-QCD. Commun. Math. Phys. 234(1), 1–35 (2003). arXiv:hep-th/0011081 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cherkis, S.A., Larrain-Hubach, A., Stern, M.: Instantons on multi-Taub-NUT spaces. I: Asymptotic form and index theorem, Aug 2016. arXiv:1608.00018
  23. 23.
    Cherkis, S.A., Ward, R.S.: Moduli of monopole walls and amoebas. J. High Energy Phys. (5), 090, front matter+36 (2012). arXiv:1202.1294
  24. 24.
    Corrigan E., Goddard P.: Construction of instanton and monopole solutions and reciprocity. Ann. Phys. 154(1), 253–279 (1984). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Donaldson S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. (3) 50(1), 1–26 (1985). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Donaldson S.K.: Boundary value problems for Yang–Mills fields. J. Geom. Phys. 8(1-4), 89–122 (1991). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Donaldson, S.K.: Floer Homology Groups in Yang–Mills Theory, volume 147 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2002). With the assistance of M. Furuta and D. Kotschick.
  28. 28.
    Frejlich P., Jardim M.: Nahm transform for Higgs bundles. J. Geom. Phys. 58(9), 1221–1230 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Guo G.-Y.: Yang–Mills fields on cylindrical manifolds and holomorphic bundles I. Commun. Math. Phys. 179(3), 737–775 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Guo G.-Y.: Yang–Mills fields on cylindrical manifolds and holomorphic bundles II. Commun. Math. Phys. 179(3), 777–788 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hitchin N.J.: On the construction of monopoles. Commun. Math. Phys. 89(2), 145–190 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hörmander, L.: An introduction to complex analysis in several variables. North-Holland Publishing Co., Amsterdam; American Elsevier Publishing, New York; revised edition, North-Holland Mathematical Library, vol. 7 (1973)Google Scholar
  33. 33.
    Hurtubise, J.C., Markman, E.: Elliptic Sklyanin integrable systems for arbitrary reductive groups. Adv. Theor. Math. Phys. 6(5), 873–978 (2003), 2002. arXiv:math.AG/0203031
  34. 34.
    Hurtubise J., Murray M.K.: On the construction of monopoles for the classical groups. Commun. Math. Phys. 122(1), 35–89 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hurtubise J., Murray M.K.: Monopoles and their spectral data. Commun. Math. Phys. 133(3), 487–508 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2006) Google Scholar
  37. 37.
    Jardim M.: Classification and existence of doubly-periodic instantons. Q. J. Math. 53(4), 431–442 (2002). arXiv:math.DG/0108004 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Jardim M.: Nahm transform and spectral curves for doubly-periodic instantons. Commun. Math. Phys. 225(3), 639–668 (2002). arXiv:math.AG/9909146 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jardim M.: A survey on Nahm transform. J. Geom. Phys. 52(3), 313–327 (2004). arXiv:math.DG/0309305 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Kronheimer P.B., Mrowka T.S.: Gauge theory for embedded surfaces I. Topology 32(4), 773–826 (1993). MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kronheimer P.B., Mrowka T.S.: Embedded surfaces and the structure of Donaldson’s polynomial invariants. J. Differ. Geom. 41(3), 573–734 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kronheimer P.B., Nakajima H.: Yang–Mills instantons on ALE gravitational instantons. Math. Ann. 288(2), 263–307 (1990). MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Li J.Y., Narasimhan M.S.: A note on Hermitian–Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.) 17(1), 77–80 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Li J., Narasimhan M.S.: Hermitian–Einstein metrics on parabolic stable bundles. Acta Math. Sin. (Engl. Ser.) 15(1), 93–114 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Lübke M., Teleman A.: The Kobayashi–Hitchin correspondence. World Scientific Publishing, River Edge (1995). CrossRefzbMATHGoogle Scholar
  46. 46.
    Maxfield, T., Sethi, S.: Domain walls, triples and acceleration. J. High Energy Phys. (8), 066, front matter+50 (2014). arXiv:1404.2564
  47. 47.
    Mochizuki, T.: Kobayashi–Hitchin correspondence for analytically stable bundles. arXiv:1712.08978
  48. 48.
    Mochizuki, T.: Asymptotic behaviour and the Nahm transform of doubly periodic instantons with square integrable curvature. Geom. Topol. 18(5), 2823–2949 (2014). arXiv:1303.2394
  49. 49.
    Mochizuki T., Yoshino M.: Some characterizations of Dirac type singularity of monopoles. Commun. Math. Phys. 356(2), 613–625 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Morgan, J.W., Mrowka, T., Ruberman, D.: The L 2-Moduli Space and a Vanishing Theorem for Donaldson Polynomial Invariants. Monographs in Geometry and Topology, II. International Press, Cambridge (1994)Google Scholar
  51. 51.
    Mukai S.: Duality between D(X) and \({D(\hat X)}\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Nahm, W.: All self-dual multimonopoles for arbitrary gauge groups. In: Structural Elements in Particle Physics and Statistical Mechanics (Freiburg, 1981), volume 82 of NATO Advanced Study Institute Series B: Physics, pp. 301–310. Plenum, New York (1983)Google Scholar
  53. 53.
    Nahm, W.: Self-dual monopoles and calorons. In: Group Theoretical Methods in Physics (Trieste, 1983), volume 201 of Lecture Notes in Physics, pp. 189–200. Springer, Berlin (1984).
  54. 54.
    Nakajima, H.: Monopoles and Nahm’s equations. In: Einstein Metrics and Yang–Mills Connections (Sanda, 1990), volume 145 of Lecture Notes in Pure and Applied Mathematics, pp. 193–211. Dekker, New York (1993)Google Scholar
  55. 55.
    Nakamula A., Sasaki S., Takesue K.: ADHM construction of (anti-)self-dual instantons in eight dimensions. Nucl. Phys. B 910, 199–224 (2016). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Nye, T.M.W.: The geometry of calorons. PhD thesis, University of Edinburgh (2001). arXiv:hep-th/0311215
  57. 57.
    Osborn H.: On the Atiyah–Drinfel’d–Hitchin–Manin construction for self-dual gauge fields. Commun. Math. Phys. 86(2), 195–219 (1982)ADSCrossRefzbMATHGoogle Scholar
  58. 58.
    Owens, B.: Instantons on cylindrical manifolds and stable bundles. Geom. Topol. 5, 761–797 (2001).
  59. 59.
    Schenk H.: On a generalised Fourier transform of instantons over flat tori. Commun. Math. Phys. 116(2), 177–183 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Am. Math. Soc. 1(4), 867–918 (1988).
  61. 61.
    Szabó, S.: Nahm transform for integrable connections on the Riemann sphere. Mém. Soc. Math. Fr. (N.S.) (110), ii+114 pp. (2008), 2007. arXiv:math.DG/0511471
  62. 62.
    Taubes C.H.: L 2 Moduli Spaces on 4-Manifolds with Cylindrical Ends. Monographs in Geometry and Topology, I. International Press, Cambridge (1993)Google Scholar
  63. 63.
    Baal Pierre: Instanton moduli for \({T^3\times{\mathbb{R}}}\). Nucl. Phys. B Proc. Suppl. 49, 238–249 (1996). arXiv:hep-th/9512223 ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    Baal Pierre: Nahm gauge fields for the torus. Phys. Lett. B 448(1-2), 26–32 (1999). arXiv:hep-th/9811112 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations