On Landauer’s Principle and Bound for Infinite Systems

Article
  • 24 Downloads

Abstract

Landauer’s principle provides a link between Shannon’s information entropy and Clausius’ thermodynamical entropy. Here we set up a basic formula for the incremental free energy of a quantum channel, possibly relative to infinite systems, naturally arising by an Operator Algebraic point of view. By the Tomita–Takesaki modular theory, we can indeed describe a canonical evolution associated with a quantum channel state transfer. Such evolution is implemented both by a modular Hamiltonian and a physical Hamiltonian, the latter being determined by its functoriality properties. This allows us to make an intrinsic analysis, extending our QFT index formula, but without any a priori given dynamics; the associated incremental free energy is related to the logarithm of the Jones index and is thus quantised. This leads to a general lower bound for the incremental free energy of an irreversible quantum channel which is half of the Landauer bound, and to further bounds corresponding to the discrete series of the Jones index. In the finite dimensional context, or in the case of DHR charges in QFT, where the dimension is a positive integer, our lower bound agrees with Landauer’s bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett C.H.: Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bikram P., Mukherjee K., Srinivasan R., Sunder V.S.: Hilbert von Neumann modules. Commun. Stoch. Anal. 6(1), 49–64 (2012)MathSciNetMATHGoogle Scholar
  3. 3.
    Bisognano J., Wichmann E.: On the duality condition for a Hermitean scalar field. J. Math. Phys. 16, 985 (1975)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Bratteli, O., Robinson, D.: Operator Algebras and Quantum Statistical Mechanics, vol. I & II. Springer Verlag, Berlin–Heidelberg–New York (1987 & 1997)Google Scholar
  5. 5.
    Brut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R., Lutz E.: Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Casini H.: Relative entropy and the Bekenstein bound. Class. Quantum Gravity 25, 205021 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Connes A.: Une classification des facteurs de type III. Ann. Sci. Ec. Norm. Sup. 6, 133–252 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Connes A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2), 153–164 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Connes A.: Noncommutative Geometry. Academic Press, Cambridge (1994)MATHGoogle Scholar
  10. 10.
    Connes A., Rovelli C.: von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Class. Quantum Gravity 11(12), 2899–2917 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Falcone T.: L 2-von Neumann modules, their relative tensor products and the spatial derivative. Ill. J. Math. 44(2), 407–437 (2000)MATHGoogle Scholar
  13. 13.
    Fidaleo F., Isola T.: Minimal conditional expectations for inclusions with atomic centres. Intern. J. Math. 7, 307–327 (1996)CrossRefMATHGoogle Scholar
  14. 14.
    Fiedler L., Naaijkens P., Osborne T.J.: Jones index, secret sharing and total quantum dimension. New J. Phys. 19(2), 023039 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Giorgetti, L., Longo, R.: Minimal index and dimension for \({2 - C^*}\)-categories with finite-dimensional centers, in preparationGoogle Scholar
  16. 16.
    Goodman F.M., de la Harpe P., Jones V.F.R.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications. Springer-Verlag, New York (1989)CrossRefGoogle Scholar
  17. 17.
    Guido D., Longo R.: Relativistic invariance and charge conjugation in quantum field theory. Commun. Math. Phys. 148(3), 521–551 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Haag R.: Local Quantum Physics—Fields, Particles, Algebras. Springer, New York (1996)MATHGoogle Scholar
  19. 19.
    Havet J.-F.: Espérance conditionelle minimale. J. Oper. Theory 24, 33–55 (1990)MATHGoogle Scholar
  20. 20.
    Hislop P.D., Longo R.: Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys. 84, 71–85 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hollands, S., Sanders, K.: Entanglement measures and their properties in quantum field theory. Springer Briefs Math. Phys. (in press). arXiv:1702.04924
  22. 22.
    Jakšić V., Pillet C.-A.: A note on the Landauer principle in quantum statistical mechanics. J. Math. Phys. 55, 075210 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Jones V.F.R.: Index for subfactors. Invent. Math. 72, 1–25 (1983)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kawahigashi Y., Longo R.: Classification of local conformal nets. Case \({c < 1}\). Ann. Math. 160, 493–522 (2004)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kawahigashi Y., Longo R.: Noncommutative spectral invariants and black hole entropy. Commun. Math. Phys. 257, 193–225 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kosaki H.: Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66(1), 123–140 (1986)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kosaki H., Longo R.: A remark on the minimal index of subfactors. J. Funct. Anal. 107, 458–470 (1992)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Landauer R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon: Entropy, Information, Computing. Princeton University Press, Princeton (2014)Google Scholar
  30. 30.
    Longo R.: Simple injective subfactors. Adv. Math. 63, 152–171 (1987)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Longo R.: Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126(2), 217–247 (1989)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Longo R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys. 130(2), 285–309 (1990)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Longo R.: Minimal index and braided subfactors. J. Funct. Anal. 109, 98–112 (1992)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Longo R.: An analogue of the Kac–Wakimoto formula and black hole conditional entropy. Commun. Math. Phys. 186, 451–479 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Longo R.: Notes for a quantum index theorem. Commun. Math. Phys. 222, 45–96 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Longo R., Roberts J.E.: A theory of dimension. K-Theory 11, 103–159 (1997)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Longo, R., Xu, F.: Relative entropy in CFT. arXiv:1712.07283
  38. 38.
    Longo, R., Xu, F.: Comment on the Bekenstein bound. J. Geom. Phys. (in press). arXiv:1802.07184
  39. 39.
    Naaijkens P.: Kosaki–Longo index and classification of charges in 2D quantum spin models. J. Math. Phys. 54, 081901 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Ohya M., Petz D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer-Verlag, Berlin (1993)CrossRefMATHGoogle Scholar
  41. 41.
    Otani, Y., Tanimoto, Y.: Towards entanglement entropy with UV cutoff in conformal nets. Ann. Henri Poincaré (in press). arXiv:1701.01186
  42. 42.
    Pimsner M., Popa S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4) 19(1), 57–106 (1986)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Popa, S.: Correspondences, INCREST preprint (1986)Google Scholar
  44. 44.
    Sauvageot J.L.: Sur le produit tensoriel relatif d’espaces de Hilbert. J. Oper. Theory 9, 237–252 (1983)MathSciNetMATHGoogle Scholar
  45. 45.
    Sewell G.L.: Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. 141, 201–224 (1982)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Strătilă S.: Modular Theory in Operator Algebras. Abacus Press, Tunbridge Wells (1981)MATHGoogle Scholar
  47. 47.
    Takesaki, M.: Theory of Operator Algebras, vol. I & II. Springer-Verlag, New York–Heidelberg (2002 & 2003)Google Scholar
  48. 48.
    Xu F.: On a conjecture of Kac–Wakimoto. Publ. Res. Inst. Math. Sci. 37(2), 165–190 (2001)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Wald R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Lectures in Physics. University of Chicago Press, Chicago, IL (1994)MATHGoogle Scholar
  50. 50.
    Yamagami S.: Modular theory for bimodules. J. Funct. Anal. 125, 327–357 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma Tor VergataRomeItaly

Personalised recommendations