Communications in Mathematical Physics

, Volume 363, Issue 1, pp 333–350 | Cite as

T-Duality in an H-Flux: Exchange of Momentum and Winding

  • Fei Han
  • Varghese Mathai


Using our earlier proposal for Ramond–Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127–150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383–415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341–365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators, Grundlehren Math. Wiss. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bismut J.M.: Index theorem and equivariant cohomology on the loop space. Commun. Math. Phys. 98(2), 213–237 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bott R., Tu L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bouwknegt P.: Lectures on cohomology, T-duality and generalized geometry. Lect. Notes Phys. 807, 261–311 (2010)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bouwknegt, P., Carey, A., Mathai, V., Murray, M., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). Preprint arXiv:hep-th/0106194
  6. 6.
    Bouwknegt, P., Evslin, J. Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). Preprint arXiv:hep-th/0306062
  7. 7.
    Bouwknegt, P., Evslin, J., Mathai, V.: On the topology and flux of T-dual manifolds. Phys. Rev. Lett. 92, 181601 (2004). Preprint arXiv:hep-th/0312052
  8. 8.
    Bouwknegt, P., Mathai, V.: Review of T-duality (in progress) Google Scholar
  9. 9.
    Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics. Birkhauser Boston, Inc., Boston (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cavalcanti, G., Gualtieri, M.: Generalized complex geometry and T-duality. A celebration of the mathematical legacy of Raoul Bott. In: CRM Proceedings of Lecture Notes, vol. 50, pp. 341–365. American Mathematical Society, Providence, RI (2010)Google Scholar
  11. 11.
    Gualtieri, M.: Generalized complex geometry. Ph.D. Thesis, University of Oxford (2003). Preprint arXiv:math.DG/0401221
  12. 12.
    Gualtieri M.: Generalized complex geometry. Ann. Math. (2) 174(1), 75–123 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Han, F., Mathai, V.: Exotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality. Commun. Math. Phys. 337(1), 127–150 (2015). Preprint arXiv:1405.1320
  14. 14.
    Han, F., Mathai, V.: Work in progressGoogle Scholar
  15. 15.
    Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E.: Mirror Symmetry. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  16. 16.
    Mathai V., Quillen D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1), 85–110 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mathai, V., Stevenson, D.: Chern character in twisted K-theory: equivariant and holomorphic cases. Commun. Math. Phys. 236, 161–186 (2003). Preprint arXiv:hep-th/0201010
  18. 18.
    Rohm R., Witten E.: The antisymmetric tensor field in superstring theory. Ann. Phys. 170(2), 454–489 (1986)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore
  2. 2.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations