Advertisement

T-Duality in an H-Flux: Exchange of Momentum and Winding

  • Fei Han
  • Varghese Mathai
Article
  • 47 Downloads

Abstract

Using our earlier proposal for Ramond–Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127–150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383–415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341–365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berline N., Getzler E., Vergne M.: Heat Kernels and Dirac Operators, Grundlehren Math. Wiss. Springer, New York (1992)CrossRefMATHGoogle Scholar
  2. 2.
    Bismut J.M.: Index theorem and equivariant cohomology on the loop space. Commun. Math. Phys. 98(2), 213–237 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bott R., Tu L.: Differential Forms in Algebraic Topology, Graduate Texts in Mathematics. Springer, New York (1982)CrossRefMATHGoogle Scholar
  4. 4.
    Bouwknegt P.: Lectures on cohomology, T-duality and generalized geometry. Lect. Notes Phys. 807, 261–311 (2010)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Bouwknegt, P., Carey, A., Mathai, V., Murray, M., Stevenson, D.: Twisted K-theory and K-theory of bundle gerbes. Commun. Math. Phys. 228, 17–49 (2002). Preprint arXiv:hep-th/0106194
  6. 6.
    Bouwknegt, P., Evslin, J. Mathai, V.: T-duality: topology change from H-flux. Commun. Math. Phys. 249, 383–415 (2004). Preprint arXiv:hep-th/0306062
  7. 7.
    Bouwknegt, P., Evslin, J., Mathai, V.: On the topology and flux of T-dual manifolds. Phys. Rev. Lett. 92, 181601 (2004). Preprint arXiv:hep-th/0312052
  8. 8.
    Bouwknegt, P., Mathai, V.: Review of T-duality (in progress) Google Scholar
  9. 9.
    Brylinski J.-L.: Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics. Birkhauser Boston, Inc., Boston (1993)CrossRefMATHGoogle Scholar
  10. 10.
    Cavalcanti, G., Gualtieri, M.: Generalized complex geometry and T-duality. A celebration of the mathematical legacy of Raoul Bott. In: CRM Proceedings of Lecture Notes, vol. 50, pp. 341–365. American Mathematical Society, Providence, RI (2010)Google Scholar
  11. 11.
    Gualtieri, M.: Generalized complex geometry. Ph.D. Thesis, University of Oxford (2003). Preprint arXiv:math.DG/0401221
  12. 12.
    Gualtieri M.: Generalized complex geometry. Ann. Math. (2) 174(1), 75–123 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Han, F., Mathai, V.: Exotic twisted equivariant cohomology of loop spaces, twisted Bismut–Chern character and T-duality. Commun. Math. Phys. 337(1), 127–150 (2015). Preprint arXiv:1405.1320
  14. 14.
    Han, F., Mathai, V.: Work in progressGoogle Scholar
  15. 15.
    Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E.: Mirror Symmetry. American Mathematical Society, Providence (2003)MATHGoogle Scholar
  16. 16.
    Mathai V., Quillen D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1), 85–110 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mathai, V., Stevenson, D.: Chern character in twisted K-theory: equivariant and holomorphic cases. Commun. Math. Phys. 236, 161–186 (2003). Preprint arXiv:hep-th/0201010
  18. 18.
    Rohm R., Witten E.: The antisymmetric tensor field in superstring theory. Ann. Phys. 170(2), 454–489 (1986)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore
  2. 2.School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations