Skip to main content
Log in

Lozenge Tiling Dynamics and Convergence to the Hydrodynamic Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a reversible continuous-time Markov dynamics of a discrete (2 + 1)-dimensional interface. This can be alternatively viewed as a dynamics of lozenge tilings of the \({L\times L}\) torus, or as a conservative dynamics for a two-dimensional system of interlaced particles. The particle interlacement constraints imply that the equilibrium measures are far from being product Bernoulli: particle correlations decay like the inverse distance squared and interface height fluctuations behave on large scales like a massless Gaussian field. We consider a particular choice of the transition rates, originally proposed in Luby et al. (SIAM J Comput 31:167–192, 2001): in terms of interlaced particles, a particle jump of length n that preserves the interlacement constraints has rate 1/(2n). This dynamics presents special features: the average mutual volume between two interface configurations decreases with time (Luby et al. 2001) and a certain one-dimensional projection of the dynamics is described by the heat equation (Wilson in Ann Appl Probab 14:274–325, 2004). In this work we prove a hydrodynamic limit: after a diffusive rescaling of time and space, the height function evolution tends as \({L\to\infty}\) to the solution of a non-linear parabolic PDE. The initial profile is assumed to be C2 differentiable and to contain no “frozen region”. The explicit form of the PDE was recently conjectured (Laslier and Toninelli in Ann Henri Poincaré Theor Math Phys 18:2007–2043, 2017) on the basis of local equilibrium considerations. In contrast with the hydrodynamic equation for the Langevin dynamics of the Ginzburg–Landau model (Funaki and Spohn in Commun Math Phys 85:1–36, 1997; Nishikawa in Commun Math Phys 127:205–227, 2003), here the mobility coefficient turns out to be a non-trivial function of the interface slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caputo P., Martinelli F., Toninelli F.L.: Mixing times of monotone surfaces and SOS interfaces: a mean curvature approach. Commun. Math. Phys. 311, 157–189 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Chang C.C., Yau H.-T.: Fluctuations of one dimensional Ginzburg–Landau models in nonequilibrium. Commun. Math. Phys. 145, 209–239 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chhita S., Ferrari P.L.: A combinatorial identity for the speed of growth in an anisotropic KPZ model. Ann. Inst. Henri Poincaré D 4(4), 453–477 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corwin I., Toninelli F.L.: Stationary measure of the driven two-dimensional q-Whittaker particle system on the torus. Electron. Commun. Probab. 21(44), 1–12 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Fritz J.: On the hydrodynamic limit of a Ginzburg Landau lattice model. Probab. Theory Relat. Fields 81, 291–318 (1989)

    Article  MATH  Google Scholar 

  6. Funaki T.: Stochastic Interface Models. Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, Vol. 1869, pp. 103–274. Springer, Berlin (2005)

    Google Scholar 

  7. Funaki T., Spohn H.: Motion by mean curvature from the Ginzburg–Landau \({\nabla\phi}\) interface model. Commun. Math. Phys. 85, 1–36 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Georgii H.-O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Kenyon R.: Lectures on Dimers. Statistical Mechanics, IAS/Park City Mathematics Series, Vol. 16, pp. 191–230. American Mathematical Society, Providence, RI (2009)

    Google Scholar 

  10. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. Math. 163, 1019–1056 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kipnis C., Landim C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Laslier B., Toninelli F.L.: Lozenge tilings, Glauber dynamics and macroscopic shape. Commun. Math. Phys. 338, 1287–1326 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Laslier B., Toninelli F.L.: Hydrodynamic limit for a lozenge tiling Glauber dynamics. Ann. Henri Poincaré Theor. Math. Phys. 18, 2007–2043 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lieberman G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  15. Luby M., Randall D., Sinclair A.: Markov Chain Algorithms for Planar Lattice Structures. SIAM J. Comput. 31, 167–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nishikawa T.: Hydrodynamic limit for the Ginzburg–Landau \({\nabla\phi}\) interface model with boundary conditions. Commun. Math. Phys. 127, 205–227 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Sheffield, S.: Random Surfaces. Astésque, (2005)

  18. Spohn H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  19. Spohn H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081–1132 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Toninelli F.L.: A (2 + 1)-dimensional growth process with explicit stationary measure. Ann. Probab. 45, 2899–2940 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilson D.B.: Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab. 14, 274–325 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Lucio Toninelli.

Additional information

Communicated by H. Duminil-Copin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laslier, B., Toninelli, F.L. Lozenge Tiling Dynamics and Convergence to the Hydrodynamic Equation. Commun. Math. Phys. 358, 1117–1149 (2018). https://doi.org/10.1007/s00220-018-3095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3095-y

Navigation