Advertisement

Communications in Mathematical Physics

, Volume 361, Issue 1, pp 239–287 | Cite as

From a Non-Markovian System to the Landau Equation

  • Juan J. L. Velázquez
  • Raphael Winter
Article

Abstract

In this paper, we prove that in macroscopic times of order one, the solutions to the truncated BBGKY hierarchy (to second order) converge in the weak coupling limit to the solution of the nonlinear spatially homogeneous Landau equation. The truncated problem describes the formal leading order behavior of the underlying particle dynamics, and can be reformulated as a non-Markovian hyperbolic equation that converges to the Markovian evolution described by the parabolic Landau equation. The analysis in this paper is motivated by Bogolyubov’s derivation of the kinetic equation by means of a multiple time scale analysis of the BBGKY hierarchy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandre R., Villani C.: On the Landau approximation in plasma physics. Ann. Inst. Henri Poincaré Anal. Nonlinéaire 21(1), 61–95 (2004)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Balescu R.: Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermodynamics, vol. 4. Wiley, London (1963)zbMATHGoogle Scholar
  3. 3.
    Balescu R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley, London (1975)zbMATHGoogle Scholar
  4. 4.
    Basile G., Nota A., Pulvirenti M.: A diffusion limit for a test particle in a random distribution of scatterers. J. Stat. Phys. 155(6), 1087–1111 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bobylev A., Pulvirenti M., Saffirio C.: From particle systems to the Landau equation: a consistency result. Commun. Math. Phys. 319(3), 683–702 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bogoliubov, N.: Problems of a dynamical theory in statistical physics. In: Studies in Statistical Mechanics, vol. I, pp. 1–118. Interscience, New York (1962)Google Scholar
  7. 7.
    Boldrighini C., Bunimovich L.A., Sinai Y.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32(3), 477–501 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Desvillettes L.: Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. J. Funct. Anal. 269(5), 1359–1403 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Desvillettes L., Pulvirenti M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci. 9(8), 1123–1145 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Desvillettes L., Ricci V.: A rigorous derivation of a linear kinetic equation of Fokker–Planck type in the limit of grazing collisions. J. Stat. Phys. 104(5–6), 1173–1189 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness. Commun. Partial Differ. Equ. 25(1–2), 179–259 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Desvillettes L., Villani C.: On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Commun. Partial Differ. Equ. 25(1–2), 261–298 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Desvillettes L., Villani C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    DiPerna R., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gallagher I., Saint-Raymond L., Texier B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2013)zbMATHGoogle Scholar
  16. 16.
    Gallavotti, G.: Grad–Boltzmann limit and Lorentz’s Gas. In: Statistical Mechanics: A Short Treatise (1999)Google Scholar
  17. 17.
    Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    John. F.: Partial Differential Equations, Applied Mathematical Sciences, vol. 1, 4th edn. Springer, New York (1991)Google Scholar
  19. 19.
    Landau L.: Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung. Phys. Z. Sow. Union 10, 154 (1936)zbMATHGoogle Scholar
  20. 20.
    Lanford, O.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Physics, vol. 38, pp. 1–111 (1975)Google Scholar
  21. 21.
    Lenard A.: On Bogoliubov’s kinetic equation for a spatially homogeneous plasma. Ann. Phys. 10, 390–400 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lifshitz E., Pitaevskii L.: Course of Theoretical Physics. Pergamon Press, Oxford (1981)Google Scholar
  23. 23.
    Majda A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53. Springer, New York (1984)CrossRefGoogle Scholar
  24. 24.
    Pulvirenti M., Saffirio C., Simonella S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26(2), 64 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pulvirenti M., Simonella S.: The Boltzmann–Grad limit of a hard sphere system: analysis of the correlation error. Invent. Math. 207(3), 1135–1237 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Silvestre L.: Upper bounds for parabolic equations and the Landau equation. J. Differ. Equ. 262(3), 3034–3055 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Spohn H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60(3), 277–290 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Spohn H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (2012)zbMATHGoogle Scholar
  30. 30.
    Strain R., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187(2), 287–339 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Toscani G., Villani C.: Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203(3), 667–706 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Villani C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Villani C.: On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Models Methods Appl. Sci. 8(6), 957–983 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Villani, C.: A Review of Mathematical Topics in Collisional Kinetic Theory. Handbook of Mathematical Fluid Dynamics, vol. 1. North-Holland, Amsterdam (2002)Google Scholar
  35. 35.
    Wennberg B.: Stability and exponential convergence in L p for the spatially homogeneous Boltzmann equation. Nonlinear Anal. 20(8), 935–964 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations