Advertisement

Communications in Mathematical Physics

, Volume 358, Issue 2, pp 791–814 | Cite as

Tripartite-to-Bipartite Entanglement Transformation by Stochastic Local Operations and Classical Communication and the Structure of Matrix Spaces

  • Yinan Li
  • Youming Qiao
  • Xin Wang
  • Runyao Duan
Article
  • 110 Downloads

Abstract

We study the problem of transforming a tripartite pure state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the tripartite-to-bipartite SLOCC convertibility is characterized by the maximal Schmidt rank of the given tripartite state, i.e. the largest Schmidt rank over those bipartite states lying in the support of the reduced density operator. In this paper, we further study this problem and exhibit novel results in both multi-copy and asymptotic settings, utilizing powerful results from the structure of matrix spaces. In the multi-copy regime, we observe that the maximal Schmidt rank is strictly super-multiplicative, i.e. the maximal Schmidt rank of the tensor product of two tripartite pure states can be strictly larger than the product of their maximal Schmidt ranks. We then provide a full characterization of those tripartite states whose maximal Schmidt rank is strictly super-multiplicative when taking tensor product with itself. Notice that such tripartite states admit strict advantages in tripartite-to-bipartite SLOCC transformation when multiple copies are provided. In the asymptotic setting, we focus on determining the tripartite-to-bipartite SLOCC entanglement transformation rate. Computing this rate turns out to be equivalent to computing the asymptotic maximal Schmidt rank of the tripartite state, defined as the regularization of its maximal Schmidt rank. Despite the difficulty caused by the super-multiplicative property, we provide explicit formulas for evaluating the asymptotic maximal Schmidt ranks of two important families of tripartite pure states by resorting to certain results of the structure of matrix spaces, including the study of matrix semi-invariants. These formulas turn out to be powerful enough to give a sufficient and necessary condition to determine whether a given tripartite pure state can be transformed to the bipartite maximally entangled state under SLOCC, in the asymptotic setting. Applying the recent progress on the non-commutative rank problem, we can verify this condition in deterministic polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett C.H., Wiesner S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cohen O.: Unlocking hidden entanglement with classical information. Phys. Rev. Lett. 80, 2493–2496 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    DiVincenzo D.P., Fuchs C.A., Mabuchi H., Smolin J.A., Thapliyal A., Uhlmann A.: Entanglement of Assistance, pp. 247–257. Springer, Berlin (1999)zbMATHGoogle Scholar
  5. 5.
    Smolin J.A., Verstraete F., Winter A.: Entanglement of assistance and multipartite state distillation. Phys. Rev. A 72(5), 52317 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Verstraete F., Popp M., Cirac J.I.: Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Popp M., Verstraete F., Martín-Delgado M.A., Cirac J.I.: Localizable entanglement. Phys. Rev. A 71, 042306 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Horodecki M., Oppenheim J., Winter A.: Partial quantum information. Nature 436(7051), 673–676 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Gour G., Meyer D.A., Sanders B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Fortescue B., Lo H.-K.: Random bipartite entanglement from W and W-like states. Phys. Rev. Lett. 98, 260501 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gour G., Spekkens R.W.: Entanglement of assistance is not a bipartite measure nor a tripartite monotone. Phys. Rev. A 73, 062331 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Gour G.: Entanglement of collaboration. Phys. Rev. A 74(5), 052307 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Yang D., Eisert J.: Entanglement combing. Phys. Rev. Lett. 103, 220501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Winter A.: On environment-assisted capacities of quantum channels. Markov Proc. Rel. Fields 13(1–2), 297–314 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mendl C.B., Wolf M.M.: Unital quantum channels—convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gour G., Wallach N.R.: Classification of multipartite entanglement of all finite dimensionality. Phys. Rev. Lett. 111, 060502 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Chitambar E., Duan R., Shi Y.: Tripartite entanglement transformations and tensor rank. Phys. Rev. Lett. 101(14), 140502 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Yu N., Chitambar E., Guo C., Duan R.: Tensor rank of the tripartite state. Phys. Rev. A 81(1), 14301 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Chen L., Chitambar E., Duan R., Ji Z., Winter A.: Tensor rank and stochastic entanglement catalysis for multipartite pure states. Phys. Rev. Lett. 105, 200501 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 62314 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vidal G.: Entanglement of pure states for a single copy. Phys. Rev. Lett. 83(5), 1046–1049 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Lo H.-K., Popescu S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63((2), 022301 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Håstad J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chitambar E., Duan R., Shi Y.: Multipartite-to-bipartite entanglement transformations and polynomial identity testing. Phys. Rev. A 81(5), 52310 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Edmonds J.: Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Stand. Sect. B 71, 241–245 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Blum M., Kannan S.: Designing programs that check their work. J. ACM 42, 269–291 (1995)CrossRefzbMATHGoogle Scholar
  28. 28.
    Agrawal M., Biswas S.: Primality and identity testing via chinese remaindering. J. ACM 50, 429–443 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schwartz J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27, 701–717 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zippel R.: Probabilistic Algorithms for Sparse Polynomials, pp. 216–226. Springer, Berlin (1979)zbMATHGoogle Scholar
  31. 31.
    Gurvits L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69, 448–484 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Toda S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Trans. Inf. Syst. E 75(D), 116–124 (1992)Google Scholar
  33. 33.
    Lovász L.: On determinants, matchings, and random algorithms. FCT 79, 565–574 (1979)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nisan, N., Wigderson, A.: Hardness vs. randomness. In: 29th Annual Symposium on Foundations of Computer Science, pp. 2–11. IEEE (1988)Google Scholar
  35. 35.
    Kabanets V., Impagliazzo R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computat. Complex. 13(1/2), 1–46 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Yu N., Guo C., Duan R.: Obtaining a W state from a Greenberger–Horne–Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. Phys. Rev. Lett. 112(16), 160401 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Vrana P., Christandl M.: Asymptotic entanglement transformation between W and GHZ states. J. Math. Phys. 56(2), 022204 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Garg, A., Gurvits, L., Oliveira, R., Wigderson, A.: A Deterministic Polynomial Time Algorithm for Noncommutative Rational Identity Testing. In: 57th Annual Symposium on Foundations of Computer Science, pp. 109–117. IEEE (2016)Google Scholar
  39. 39.
    Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: Constructive Noncommutative Rank Computation in Deterministic Polynomial Time Over Fields of Arbitrary Characteristics. arXiv preprint arXiv:1512.03531 (2015)
  40. 40.
    Barnum H., Nielsen M.A., Schumacher B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57(6), 4153 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Fekete M.: Über die verteilung der wurzeln bei gewissen algebraischen gleichungen mit ganzzahligen koeffizienten. Mathematische Zeitschrift 17, 228–249 (1923)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hall P.: On representatives of subsets. J. Lond. Math. Soc. S 1(10(1), 26–30 (1935)CrossRefzbMATHGoogle Scholar
  43. 43.
    Room T.G.: The Geometry of Determinantal Loci. Cambridge University Press, Cambridge (1938)zbMATHGoogle Scholar
  44. 44.
    Lovász L., Plummer M.: Matching Theory. North-Holland Mathematics Studies. Elsevier, Amsterdam (1986)Google Scholar
  45. 45.
    Lovász L.: Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Math. Soc. 20((1), 87–99 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Cohn P.M.: The word problem for free fields: a correction and an addendum. Proc. Lond. Math. Soc. 23, 193–213 (1971)CrossRefGoogle Scholar
  47. 47.
    Fortin M., Reutenauer C.: Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire 52, B52f (2004)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Eisenbud D., Harris J.: Vector spaces of matrices of low rank. Adv. Math. 70(2), 135–155 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Derksen H., Makam V.: Polynomial degree bounds for matrix semi-invariants. Adv. Math. 310, 44–63 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Bürgin M., Draisma J.: The Hilbert null-cone on tuples of matrices and bilinear forms. Mathematische Zeitschrift 254(4), 785–809 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Adsul, B., Nayak, S., Subrahmanyam, K.V.: A Geometric Approach to the Kronecker Problem II: Rectangular Shapes, Invariants of Matrices and the Artin–Procesi Theorem, preprint (2007)Google Scholar
  52. 52.
    Derksen H., Weyman J.: Semi-invariants of quivers and saturation for Littlewood–Richardson coefficients. J. Am. Math. Soc. 13(3), 467–479 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Schofield A., Van den Bergh M.: Semi-invariants of quivers for arbitrary dimension vectors. Indagationes Mathematicae 12(1), 125–138 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Domokos M., Zubkov A. N.: Semi-invariants of quivers as determinants. Trans. Groups 6(1), 9–24 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Derksen H., Makam V.: Polynomial degree bounds for matrix semi-invariants. Adv. Math. 310, 44–63 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Ivanyos, G., Qiao, Y., Subrahmanyam, K.V.: On Generating the Ring of Matrix Semi-invariants. arXiv:1508.01554 (2015)
  57. 57.
    Hrubeš P., Wigderson A.: Non-commutative arithmetic circuits with division. Theory Comput. 11(14), 357–393 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Ivanyos G., Qiao Y., Subrahmanyam K.V.: Non-commutative Edmonds’ problem and matrix semi-invariants. Comput. Complex. 26(3), 717–763 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    Wang X., Duan R.: Improved semidefinite programming upper bound on distillable entanglement. Phys. Rev. A 94((5), 050301 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    Wang, X., Duan, R.: Nonadditivity of Rains’ bound for distillable entanglement. Phys. Rev. A 95(6), 062322 (2007)Google Scholar
  62. 62.
    Holevo A.S., Werner R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)ADSCrossRefGoogle Scholar
  63. 63.
    Duan R., Severini S., Winter A.: Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number. IEEE Trans. Inf. Theory 59((2), 1164–1174 (2013)CrossRefzbMATHGoogle Scholar
  64. 64.
    Wang, X., Duan, R.: A semidefinite programming upper bound of quantum capacity. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1690–1694. IEEE (2016)Google Scholar
  65. 65.
    Wang, X., Xie, W., Duan, R.: Semidefinite programming strong converse bounds for classical capacity. IEEE Trans. Inf. Theory 64, 640–653 (2017)Google Scholar
  66. 66.
    Smith G., Yard J.: Quantum communication with zero-capacity channels. Science 321(5897), 1812–1815 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Ivanyos G., Karpinski M., Saxena N.: Deterministic polynomial time algorithms for matrix completion problems. SIAM J. Comput. 39(8), 3736–3751 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Ash R.: Information Theory. Dover Books on Advanced Mathematics. Dover, New York (1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yinan Li
    • 1
  • Youming Qiao
    • 1
  • Xin Wang
    • 1
  • Runyao Duan
    • 1
    • 2
  1. 1.Centre for Quantum Software and Information, Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia
  2. 2.UTS-AMSS Joint Research Laboratory for Quantum Computation and Quantum Information Processing, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations