Communications in Mathematical Physics

, Volume 358, Issue 3, pp 995–1006 | Cite as

Infinite Ergodic Index of the Ehrenfest Wind-Tree Model

Article
  • 25 Downloads

Abstract

The set of all possible configurations of the Ehrenfest wind-tree model endowed with the Hausdorff topology is a compact metric space. For a typical configuration we show that the wind-tree dynamics has infinite ergodic index in almost every direction. In particular some ergodic theorems can be applied to show that if we start with a large number of initially parallel particles their directions decorrelate as the dynamics evolve, answering the question posed by the Ehrenfests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AvHu.
    Avila, A., Hubert, P.: Recurrence for the wind-tree model. Annales de l’Institut Henri Poincaré: Analyse non linéaireGoogle Scholar
  2. BaKhMaPl.
    Bachurin P., Khanin K., Marklof J., Plakhov A.: Perfect retroreflectors and billiard dynamics. J. Mod. Dyn. 5, 33–48 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. BiRo.
    Bianca C., Rondoni L.: The nonequilibrium Ehrenfest gas: A chaotic model with flat obstacles?. Chaos 19, 013121 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. De.
    Delecroix V.: Divergent trajectories in the periodic wind-tree model. J. Mod. Dyn. 7, 1–29 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. DeHuLe.
    Delecroix V., Hubert P., Lelièvre S.: Diffusion for the periodic wind-tree model. Ann. Sci. ENS 47, 1085–1110 (2014)MathSciNetMATHGoogle Scholar
  6. DeZo.
    Delecroix, V., Zorich, A.: Cries and whispers in wind-tree forests. arXiv:1502.06405 (2015)
  7. DeCoVB.
    Dettmann, C.P., Cohen, E.G.D., Van Beijeren, H.: Statistical 379 mechanics: microscopic chaos from brownian motion? Nature 401, 875. https://doi.org/10.1038/44759 (1999)
  8. EhEh.
    Ehrenfest, P., Ehrenfest, T.: Begriffliche Grundlagen der statistischen Auffassung in der Mechanik Encykl. d. Math. Wissensch. IV 2 II, Heft 6, 90 S (1912) (in German) (The conceptual foundations of the statistical approach in mechanics, trans. Moravicsik, M.J.) pp. 10–13. Cornell University Press, Itacha (1959)Google Scholar
  9. FrHu.
    Fra¸czek, K., Hubert, P.: Recurrence and non-ergodicity in generalized wind-tree models. arXiv:1506.05884 (2015)
  10. FrUl.
    Fra¸czek K., Ulcigrai C.: Non-ergodic \({\mathbb{Z}}\) -periodic billiards and infinite translation surfaces. Invent. Math. 197, 241–298 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. Ga.
    Gallavotti G.: Divergences and the approach to equilibrium in the Lorentz and the wind-tree models. Phys. Rev. 185, 308–322 (1969)ADSCrossRefGoogle Scholar
  12. GaBoGe.
    Gallavotti G., Bonetto F., Gentile G.: Aspects of Ergodic Qualitative and Statistical Theory of Motion. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  13. HaWe.
    Hardy J., Weber J.: Diffusion in a periodic wind-tree model. J. Math. Phys. 21, 1802–1808 (1980)ADSMathSciNetCrossRefGoogle Scholar
  14. HaCo.
    Hauge E.H., Cohen E.G.D.: Normal and Abnormal Diffusion in Ehrenfest’s Wind-Tree Model. J. Math. Phys. 10, 397–414 (1969)ADSCrossRefGoogle Scholar
  15. HaCo1.
    Hauge E.H., Cohen E.G.D.: Normal and Abnormal Diffusion in Ehrenfest’s Wind-Tree Model. Phys. Lett. A 25, 78–79 (1967)ADSCrossRefGoogle Scholar
  16. HuLeTr.
    Hubert, P., Pascal, Lelièvre, S., Troubetzkoy, S.: The Ehrenfest wind-tree model: periodic directions, recurrence, diffusion, J. Reine Angew. Math. 656, 223–244 (2011)Google Scholar
  17. KeMaSm.
    Kerckhoff S., Masur H., Smillie J.: Ergodicity of billiard flows and quadratic differentials. Ann. Math. (2) 124(2), 293–311 (1986)MathSciNetCrossRefMATHGoogle Scholar
  18. MSTr1.
    Málaga Sabogal A., Troubetzkoy S.: Minimality of the Ehrenfest wind-tree model. J. Mod. Dyn. 10, 209–228 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. MSTr2.
    Málaga Sabogal A., Troubetzkoy S.: Ergodicity of the Ehrenfest wind-tree model. C. R. Math. 354, 1032–1036 (2016)MathSciNetCrossRefMATHGoogle Scholar
  20. MSTr3.
    Málaga Sabogal A., Troubetzkoy S.: Weakly-mixing polygonal billiards. Bull. Lond. Math. Soc. 49, 141–147 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. Tr1.
    Troubetzkoy S.: Typical recurrence for the Ehrenfest wind-tree model. J. Stat. Phys. 141, 60–67 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. VBHa.
    Van Beyeren H., Hauge E.H.: Abnormal diffusion in Ehrenfest’s wind-tree model. Phys. Lett. A 39, 397–398 (1972)ADSCrossRefGoogle Scholar
  23. WoLa.
    Wood W., Lado F.: Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest’s wind-tree model. J. Comp. Phys. 7, 528–546 (1971)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.InriaParisFrance
  2. 2.Aix Marseille Univ, CNRS, Centrale MarseilleMarseilleFrance
  3. 3.Marseille CEDEX 9France

Personalised recommendations