Skip to main content
Log in

Momentum Maps and Stochastic Clebsch Action Principles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnaudon, A., Castro, A.L., Holm, D.D.: Noise and dissipation on coadjoint orbits. J. Nonlin. Sci. (2016) https://doi.org/10.1007/s00332-017-9404-3. Preprint at arXiv:1601.02249 [math.DS]

  2. Arnaudon, A., Castro, A.L., Holm, D.D.: Noise and dissipation in rigid body motion (2016). arXiv:1606.06308

  3. Arnaudon M., Chen X., Cruzeiro A.B.: Stochastic Euler–Poincaré reduction. J. Math. Phys. 55, 081507 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bismut, J.-M.: Mécanique aléatoire. In: Lecture Notes in Mathematics, vol. 866. Springer-Verlag, Berlin (1981)

  5. Bismut, J.-M.: Large deviations and the malliavin calculus. In: Progress in Mathematics, 45. Birkhüser Boston, Inc., (1984)

  6. Bloch, A.M.: Nonholonomic mechanics and control, second edition. With the collaboration of J. Bailieul, P.E. Crouch, J.E. Marsden, D. Zenkov. With scientific input from P.S. Krishnaprasad and R.M. Murray. In: Interdisciplinary Applied Mathematics, 24. Springer-Verlag, New York (2015)

  7. Bloch A.M., Marsden J.E., Zenkov D.V.: Quasivelocities and symmetries in non-holonomic systems. Dyn. Syst. 24(2), 187–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Cruzeiro, A.B., Ratiu, T.S.: Stochastic variational principles for dissipative equations with advected quantities. (2015). arXiv:1506.05024

  9. Clebsch A.: . J. reine angew. Math. 56, 1–10 (1859)

    Article  MathSciNet  Google Scholar 

  10. Cruzeiro A.B., Malliavin P.: Non perturbative construction of invariant measure through confinement by curvature. J. Math. Pures Appl. 77, 527–537 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Driver B.K.: A Cameron–Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold. Trans. Am. Math. Soc. 342(1), 375–395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elworthy, K.D., Li, X-M.: Geometric stochastic analysis on path spaces. In: Proceedings of the International Congress of Mathematicians, Madrid Vol. III. European Mathematical Society, Zürich, pp. 575–594 (2006)

  13. Gay-Balmaz F., Ratiu T.S.: Clebsch optimal control formulation in mechanics. J. Geom. Mech. 3(1), 41–79 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillemin V., Sternberg S.: The moment map and collective motion. Ann. Phys. 127(1), 220–253 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Hamel G.: Die Lagrange–Eulersche Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904)

    MATH  Google Scholar 

  16. Hochgerner S., Ratiu T.S.: Geometry of non-holonomic diffusion. J. Eur. Math. Soc. (JEMS) 17(2), 273–319 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holm, D.D.: Variational principles for stochastic fluid dynamics. Proc. R. Soc. A 471(2176), 20140963, (2015). http://rspa.royalsocietypublishing.org/content/471/2176/20140963

  18. Holm D.D., Schmah T., Stoica C.: Geometry, Symmetry and Mechanics. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  19. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North Holland/Kodansha (1989)

  20. Krishnaprasad P.S., Marsden J.E.: Hamiltonian structures and stability for rigid bodies with flexible attachments. Arch. Ration. Mech. Anal. 98(1), 71–93 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lázaro-Camí J.A., Ortega J.-P.: Stochastic Hamiltonian dynamical systems. Rep. Math. Phys. 61(1), 65–122 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Malliavin, P.: Stochastic Analysis. In: Grund. der Mathem. Wissen. 313. Springer-Verlag New York (1997)

  23. Marle C.-M.: On Henri Poincaré’s note “Sur une forme nouvelle des équations de la Mécanique”. J. Geom. Symmetry Phys. 29, 1–38 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Marsden, J.E., Ratiu, T.S.: Introduction to mechanics and symmetry, 2nd edn. In: Texts Applied Mathematics, vol. 17. Springer-Verlag, New York (1999)

  25. Miyahara Y.: Invariant measures of ultimately bounded stochastic processes. Nagoya Math. J. 49, 149–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ortega, J.-P., Ratiu, T.S.: Momentum maps and Hamiltonian reduction. In: Progress in Mathematics, vol. 222. Birkhüser Boston, Inc., (2004)

  27. Poincaré H.: Sur une forme nouvelle des équations de la mécanique. C.R. Acad. Sci. 132, 369–371 (1901)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Bela Cruzeiro.

Additional information

Communicated by M. Hairer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruzeiro, A.B., Holm, D.D. & Ratiu, T.S. Momentum Maps and Stochastic Clebsch Action Principles. Commun. Math. Phys. 357, 873–912 (2018). https://doi.org/10.1007/s00220-017-3048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3048-x

Navigation