Communications in Mathematical Physics

, Volume 358, Issue 3, pp 1007–1025 | Cite as

Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups

Article
  • 55 Downloads

Abstract

In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AN13.
    Al Nuwairan, M.: Potential examples for non-additivity of the minimal output entropy. Preprint, arXiv:1312.2200 (2013)
  2. AN14.
    Al Nuwairan M.: The extreme points of SU(2)-irreducibly covariant channels. Int. J. Math. 25(6), 1450048, 30 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. ASW11.
    Aubrun G., Szarek S., Werner E.: Hastings’s additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305(1), 85–97 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. ASY14.
    Aubrun G., Szarek S.J., Ye D.: Entanglement thresholds for random induced states. Commun. Pure Appl. Math. 67(1), 129–171 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. Ban96.
    Banica T.: Théorie des représentations du groupe quantique compact libre \({{\rm O}(n)}\). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)MathSciNetMATHGoogle Scholar
  6. BC16.
    Brannan, M., Collins, B.: Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones. Preprint, arXiv:1608.03885 (2016)
  7. BCN12.
    Belinschi S., Collins B., Nechita I.: Eigenvectors and eigenvalues in a random subspace of a tensor product. Invent. Math. 190(3), 647–697 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. BDRV06.
    Bichon J., De Rijdt A., Vaes S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. Bra16.
    Brannan, M.: Approximation properties for locally compact quantum groups. Preprint, arXiv:1605.01770, to appear in the volume Topological Quantum Groups. Banach Center Publications, Warszawa (2016)
  10. Cho75.
    Choi M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)MathSciNetCrossRefMATHGoogle Scholar
  11. FK97.
    Frenkel I.B., Khovanov M.G.: Canonical bases in tensor products and graphical calculus for \({U_q(sl_2)}\). Duke Math. J. 87(3), 409–480 (1997)MathSciNetCrossRefMATHGoogle Scholar
  12. FK10.
    Fukuda M., King C.: Entanglement of random subspaces via the Hastings bound. J. Math. Phys. 51(4), 042201, 19 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. GHP10.
    Grudka, A., Horodecki, M., Pankowski, L.: Constructive counterexamples to additivity of minimum output Rényi entropy of quantum channels for all \({p > 2}\). J. Phys. A Math. Theor. 43 (2010)Google Scholar
  14. Haa79.
    Haagerup, U.: An example of a nonnuclear \({C^{\ast}}\)-algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79)Google Scholar
  15. Has09.
    Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009)CrossRefGoogle Scholar
  16. HLPS12.
    Hou, J., Li, C.-K., Poon, X., Qi, Y.-T., Sze, N.-S.: Criteria and new classes of k-positive maps. Preprint, arXiv:1211.0386 (2012)
  17. HLSW04.
    Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250(2), 371–391 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. HLW06.
    Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265(1), 95–117 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. HW08.
    Hayden P., Winter A.: Counterexamples to the maximal p-norm multiplicity conjecture for all \({p > 1}\). Commun. Math. Phys. 284(1), 263–280 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. KL94.
    Kauffman L.H., Lins S.L.: Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds. Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)MATHGoogle Scholar
  21. Mor15.
    Morrison, S.: A formula for the jones-wenzl projections. In: Morrison, S., Dennys, D. (eds.) Proceedings of the 2014 Mavi and 2015 Qinhuangduo Conferences in honor of Vavghan F.R. Jones’ 60th birthday. Proc. Centre. Math. Appl., vol. 46, pp. 367–368 (2017)Google Scholar
  22. NC00.
    Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  23. Tim08.
    Timmermann, T.: An invitation to quantum groups and duality. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008. From Hopf algebras to multiplicative unitaries and beyondGoogle Scholar
  24. TL71.
    Temperley H.N.V., Lieb E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A 322(1549), 251–280 (1971)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. Ver05.
    Vergnioux R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005)MathSciNetCrossRefMATHGoogle Scholar
  26. Ver07.
    Vergnioux R.: The property of rapid decay for discrete quantum groups. J. Oper. Theory 57(2), 303–324 (2007)MathSciNetMATHGoogle Scholar
  27. VV07.
    Vaes S., Vergnioux R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. Wan95.
    Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. Wen87.
    Wenzl H.: On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada 9(1), 5–9 (1987)MathSciNetMATHGoogle Scholar
  30. Wor98.
    Woronowicz, S.L.: Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), pp. 845–884. North-Holland, Amsterdam (1998)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsMailstop 3368, Texas A&M UniversityCollege StationUSA
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan
  3. 3.CNRSInstitut Camille Jordan UniversitéLyon 1France

Personalised recommendations