Communications in Mathematical Physics

, Volume 358, Issue 3, pp 1027–1039 | Cite as

On the Invariant Cantor Sets of Period Doubling Type of Infinitely Renormalizable Area-Preserving Maps

  • Dan Lilja
Open Access


Since its inception in the 1970s at the hands of Feigenbaum and, independently, Coullet and Tresser the study of renormalization operators in dynamics has been very successful at explaining universality phenomena observed in certain families of dynamical systems. The first proof of existence of a hyperbolic fixed point for renormalization of area-preserving maps was given by Eckmann et al. (Mem Am Math Soc 47(289):vi+122, 1984). However, there are still many things that are unknown in this setting, in particular regarding the invariant Cantor sets of infinitely renormalizable maps. In this paper we show that the invariant Cantor set of period doubling type of any infinitely renormalizable area-preserving map in the universality class of the Eckmann–Koch–Wittwer renormalization fixed point is always contained in a Lipschitz curve but never contained in a smooth curve. This extends previous results by de Carvalho, Lyubich and Martens about strongly dissipative maps of the plane close to unimodal maps to the area-preserving setting. The method used for constructing the Lipschitz curve is very similar to the method used in the dissipative case but proving the nonexistence of smooth curves requires new techniques.


  1. 1.
    Avila A., Lyubich M.: The full renormalization horseshoe for unimodal maps of higher degree: exponential contraction along hybrid classes. Publ. Math. Inst. Hautes Études Sci. 114, 171–223 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Collet P., Eckmann J.-P., Koch H.: Period doubling bifurcations for families of maps on R n. J. Stat. Phys. 25(1), 1–14 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Carvalho A., Lyubich M., Martens M.: Renormalization in the H énon family. I. Universality but non-rigidity. J. Stat. Phys. 121(5-6), 611–669 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de Faria E., de Melo W., Pinto A.: Global hyperbolicity of renormalization for C r unimodal mappings. Ann. Math. (2) 164(3), 731–824 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eckmann J.-P., Koch H., Wittwer P.: A computer-assisted proof of universality for area-preserving maps. Mem. Am. Math. Soc. 47(289), vi+122 (1984)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Feigenbaum M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feigenbaum M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gaidashev D., Johnson T.: Dynamics of the universal area-preserving map associated with period doubling: hyperbolic sets. Nonlinearity 22(10), 2487 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gaidashev D., Johnson T.: Dynamics of the universal area-preserving map associated with period-doubling: stable sets. J. Mod. Dyn. 3(4), 555–587 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gaidashev D., Johnson T.: Spectral properties of renormalization for area-preserving maps. Discrete Contin. Dyn. Syst. 36(7), 3651–3675 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gaidashev D., Johnson T., Martens M.: Rigidity for infinitely renormalizable area-preserving maps. Duke Math. J. 165(1), 129–159 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gaidashev, D., Yampolsky, M.: Golden mean Siegel disk universality and renormalization. ArXiv e-prints (2016)Google Scholar
  13. 13.
    Gambaudo J.-M., van Strien S., Tresser C.: Hénon-like maps with strange attractors: there exist \({C^\infty}\) Kupka–Smale diffeomorphisms on S 2 with neither sinks nor sources. Nonlinearity 2(2), 287–304 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Golé, C.: Symplectic Twist Maps, Volume 18 of Advanced Series in Nonlinear Dynamics. Global variational techniques, World Scientific Publishing Co., Inc., River Edge (2001)Google Scholar
  15. 15.
    Lyubich M.: Feigenbaum–Coullet–Tresser universality and Milnor’s hairiness conjecture. Ann. Math. (2) 149(2), 319–420 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lyubich, M., Martens, M.: Probabilistic Universality in Two-dimensional Dynamics. ArXiv e-prints (2011)Google Scholar
  17. 17.
    Lyubich, M., Martens, M.: Renormalization of Hénon maps. In: Dynamics, Games and Science. I, Volume 1 of Springer Proc. Math., pp. 597–618. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Martens M.: The periodic points of renormalization. Ann. Math. (2) 147(3), 543–584 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sullivan, D.: Bounds, quadratic differentials, and renormalization conjectures. In American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988), pp. 417–466. American Mathematical Society, Providence (1992)Google Scholar
  20. 20.
    Tresser C., Coullet P.: Itérations d’endomorphismes et groupe de renormalisation. C. R. Acad. Sci. Paris Sér. A B 287(7), A577–A580 (1978)zbMATHGoogle Scholar
  21. 21.
    Yampolsky M.: The attractor of renormalization and rigidity of towers of critical circle maps. Commun. Math. Phys. 218(3), 537–568 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yampolsky, M.: Hyperbolicity of renormalization of critical circle maps. Publ. Math. Inst. Hautes Études Sci. 96, 1–41 (2002, 2003)Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations