Advertisement

Communications in Mathematical Physics

, Volume 356, Issue 3, pp 1057–1081 | Cite as

Quantum Algorithm for Linear Differential Equations with Exponentially Improved Dependence on Precision

  • Dominic W. Berry
  • Andrew M. Childs
  • Aaron Ostrander
  • Guoming Wang
Article
  • 151 Downloads

Abstract

We present a quantum algorithm for systems of (possibly inhomogeneous) linear ordinary differential equations with constant coefficients. The algorithm produces a quantum state that is proportional to the solution at a desired final time. The complexity of the algorithm is polynomial in the logarithm of the inverse error, an exponential improvement over previous quantum algorithms for this problem. Our result builds upon recent advances in quantum linear systems algorithms by encoding the simulation into a sparse, well-conditioned linear system that approximates evolution according to the propagator using a Taylor series. Unlike with finite difference methods, our approach does not require additional hypotheses to ensure numerical stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson S.: Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. Lond. A 461(2063), 3473–3482 (2005) arXiv:quant-ph/0412187 CrossRefzbMATHADSMathSciNetGoogle Scholar
  2. 2.
    Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 20–29 (2003). arXiv:quant-ph/0301023
  3. 3.
    Berry D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A 47(10), 105301 (2014) arXiv:1010.2745 CrossRefzbMATHADSMathSciNetGoogle Scholar
  4. 4.
    Berry D.W., Ahokas G., Cleve R., Sanders B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007) arXiv:quant-ph/0508139 CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 283–292 (2014). arXiv:1312.1414
  6. 6.
    Berry D.W., Childs A.M., Cleve R., Kothari R., Somma R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015) arXiv:1412.4687 CrossRefADSGoogle Scholar
  7. 7.
    Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: Proceedings of the 56th Annual Symposium on Foundations of Computer Science, pp. 792–809 (2015). arXiv:1501.01715
  8. 8.
    Berry D.W., Novo L.: Corrected quantum walk for optimal Hamiltonian simulation. Quantum Inf. Comput. 16(15–16), 1295 (2016) arXiv:1606.03443 MathSciNetGoogle Scholar
  9. 9.
    Brassard G., Høyer P., Mosca M., Tapp A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002) arXiv:quant-ph/0005055 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Childs, A.M.: Quantum information processing in continuous time. Ph.D. thesis, Massachusetts Institute of Technology (2004)Google Scholar
  11. 11.
    Childs, A.M., Kothari, R., Somma, R.D.: Quantum linear systems algorithm with exponentially improved dependence on precision (2015). arXiv:1511.02306
  12. 12.
    Harrow A.W., Hassidim A., Lloyd S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009) arXiv:0811.3171 CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Lloyd S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. 14.
    Low, G.H., Chuang, I.L.: Hamiltonian simulation by qubitization. arXiv:1610.06546
  15. 15.
    Low G.H., Chuang I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118(9), 010501 (2017) arXiv:1606.02685 CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Novo, L., Berry, D.W.: Improved Hamiltonian simulation via a truncated Taylor series and corrections. arXiv:1611.10033

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dominic W. Berry
    • 1
  • Andrew M. Childs
    • 2
    • 3
  • Aaron Ostrander
    • 3
    • 4
  • Guoming Wang
    • 3
  1. 1.Department of Physics and AstronomyMacquarie UniversitySydneyAustralia
  2. 2.Department of Computer Science and Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkUSA
  3. 3.Joint Center for Quantum Information and Computer ScienceUniversity of MarylandCollege ParkUSA
  4. 4.Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations