Communications in Mathematical Physics

, Volume 356, Issue 2, pp 397–425 | Cite as

Exact Solution of the Classical Dimer Model on a Triangular Lattice: Monomer–Monomer Correlations

  • Estelle Basor
  • Pavel BleherEmail author


We obtain an asymptotic formula, as \({n\to\infty}\), for the monomer–monomer correlation function \({K_2(n)}\) in the classical dimer model on a triangular lattice, with the horizontal and vertical weights \({w_h=w_v=1}\) and the diagonal weight \({w_d=t > 0}\), between two monomers at vertices q and r that are n spaces apart in adjacent rows. We find that \({t_c=\frac{1}{2}}\) is a critical value of t. We prove that in the subcritical case, \({0 < t < \frac{1}{2}}\), as \({n\to\infty, K_2(n)=K_2(\infty)\left[1-\frac{e^{-n/\xi}}{n}\,\Big(C_1+C_2(-1)^n+ \mathcal{O}(n^{-1})\Big) \right]}\), with explicit formulae for \({K_2(\infty), \xi, C_1}\), and \({C_2}\). In the supercritical case, \({\frac{1}{2} < t < 1}\), we prove that as \({n\to\infty, K_2(n)=K_2(\infty)\Bigg[1-\frac{e^{-n/\xi}}{n}\, \Big(C_1\cos(\omega n+\varphi_1)+C_2(-1)^n\cos(\omega n+\varphi_2)+ C_3+C_4(-1)^n + \mathcal{O}(n^{-1})\Big)\Bigg]}\), with explicit formulae for \({K_2(\infty), \xi,\omega}\), and \({C_1, C_2, C_3, C_4, \varphi_1, \varphi_2}\). The proof is based on an extension of the Borodin–Okounkov–Case–Geronimo formula to block Toeplitz determinants and on an asymptotic analysis of the Fredholm determinants in hand.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basor, E.L., Ehrhardt, T.: Asymptotics of block Toeplitz determinants and the classical dimer model. Commun. Math. Phys. 274, 427–455 (2007)Google Scholar
  2. 2.
    Basor E.L., Widom H.: On a Toeplitz determinant identity of Borodin and Okounkov. Integral Equ. Oper. Theory 37(4), 397–401 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borodin A., Okounkov A.: A Fredholm determinant formula for Toeplitz determinants. Integral Equ. Oper. Theory 37(4), 386–396 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Böttcher A.: One more proof of the Borodin–Okounkov formula for Toeplitz determinants. Integral Equ. Oper. Theory 41(1), 123–125 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Böttcher A., Silbermann B.: Analysis of Toeplitz Operators. Springer, Berlin (2006) (also: 2nd edn. Springer, Berlin (1990))Google Scholar
  6. 6.
    Deift, P., Its, A., Krasovsky, I.: On the asymptotics of a Toeplitz determinant with singularities. In: Random Matrix Theory, Interacting Particle Systems, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol. 65, pp. 93–146. Cambridge University Press, New York (2014)Google Scholar
  7. 7.
    Diep H.T.: Frustrated Spin Systems. World Scientific, Singapore (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ehrhardt T.: A status report on the asymptotic behavior of Toeplitz determinants with Fisher–Hartwig singularities. Operator Theory Adv. Appl. 124, 217–241 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fendley P., Moessner R., Sondhi S.L.: Classical dimers on the triangular lattice. Phys. Rev. B 66, 214513 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Fisher M.E., Stephenson J.: Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev. 132(4), 1411–1431 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Geronimo J.F., Case K.M.: Scattering theory and polynomials orthogonal on the unit circle. J. Math. Phys. 20, 299–310 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McCoy, B.: Advanced Statistical Mechanics (International Series of Monographs on Physics). Oxford University Press, Oxford (2009)Google Scholar
  13. 13.
    McCoy B., Wu T.T.: Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. Phys. Rev. 155(2), 438–452 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    Moessner, R., Raman K.S.: Quantum dimer models, Trieste Lectures (2007). arXiv:0809.3051
  15. 15.
    Moessner R., Sondhi S.L.: Resonating valence bond phase and the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Moessner R., Sondhi S.L.: Ising and dimer models in two and three dimensions. Phys. Rev. B 68, 054405 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Rokhsar D.S., Kivelson S.A.: Superconductivity and the quantum hard-core dimer gas. Phys. Rev. Lett. 61, 2376 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 13(3), 284–322 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. Math. 21(1), 1–29 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.American Institute of MathematicsSan JoseUSA
  2. 2.Department of Mathematical SciencesIndiana University-Purdue University IndianapolisIndianapolisUSA

Personalised recommendations