Advertisement

Communications in Mathematical Physics

, Volume 356, Issue 1, pp 285–327 | Cite as

Finite Type Modules and Bethe Ansatz for Quantum Toroidal \({\mathfrak{gl}_1}\)

  • B. Feigin
  • M. Jimbo
  • T. Miwa
  • E. Mukhin
Article

Abstract

We study highest weight representations of the Borel subalgebra of the quantum toroidal \({\mathfrak{gl}_1}\) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of ‘finite type’ modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current \({\psi^+(z)}\) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T V,W (u; p) analogous to those of the six vertex model. In our setting T V,W (u; p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal \({\mathfrak{gl}_1}\) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules V the corresponding transfer matrices, Q(u; p) and \({\mathcal{T}(u;p)}\), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u; p). Then we show that the eigenvalues of T V,W (u; p) are given by an appropriate substitution of eigenvalues of Q(u; p) into the q-character of V.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFS.
    Awata H., Feigin B., Shiraishi J.: Quantum algebraic approach to refined topological vertex. JHEP 2012, 041 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. Ba.
    Baxter R.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)MATHGoogle Scholar
  3. BLZ1.
    Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys. 177, 381–398 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. BLZ2.
    Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory II. Q-operators and DDV equation. Commun. Math. Phys. 190, 247–278 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. BLZ3.
    Bazhanov V., Lukyanov S., Zamolodchikov A.: Integrable structure of conformal field theory III. the Yang–Baxter relation. Commun. Math. Phys. 200, 297–324 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. BLZ4.
    Bazhanov V., Lukyanov S., Zamolodchikov A.: Spectral determinants for Schrödinger equation and Q-operators of conformal field theory. J. Stat. Phys. 102, 567–576 (2001)ADSCrossRefMATHGoogle Scholar
  7. BS.
    Burban I., Schiffmann O.: On the Hall algebra of an elliptic curve I. Duke Math. J. 161(7), 1171–1231 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. DT.
    Dorey P., Tateo R.: Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations. J. Phys. A. 32, L419–L425 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. EKP.
    Enriquez B., Khoroshkin S., Pakuliak S.: Weight functions and Drinfeld currents. Commun. Math. Phys. 276, 691–725 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. FFJMM1.
    Feigin B., Feigin E., Jimbo M., Miwa T., Mukhin E.: Quantum continuous \({\mathfrak{gl}_\infty}\) : semi-infinite construction of representations. Kyoto J. Math. 51(2), 337–364 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. FFJMM2.
    Feigin B., Feigin E., Jimbo M., Miwa T., Mukhin E.: Quantum continuous \({\mathfrak{gl}_\infty}\) : tensor product of Fock modules and \({\mathcal{W}_n}\) characters. Kyoto J. Math. 51(2), 365–392 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. FHHSY.
    Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S.: A commutative algebra on degenerate \({\mathbb{C}P^1}\) and Macdonald polynomials. J. Math. Phys. 50(9), 095215 (2009) 1–42ADSMathSciNetCrossRefMATHGoogle Scholar
  13. FHSSY.
    Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum algebras. arXiv:1002.2485
  14. FJMM1.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Quantum toroidal \({\mathfrak{gl}_1}\) algebra: plane partitions. Kyoto J. Math. 52(3), 621–659 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. FJMM2.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Quantum toroidal \({\mathfrak{gl}_1}\) and Bethe Ansatz. J.Phys. A Math. Theor. 48, 244001 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. FJMM3.
    Feigin B., Jimbo M., Miwa T., Mukhin E.: Finite type modules and Bethe ansatz equations. Ann. Henri Poincaré. 18(8), 2543–2579 (2017)MathSciNetCrossRefGoogle Scholar
  17. FKSW.
    Feigin, B., Kojima, T., Shiraishi, J., Watanabe, H.: The integrals of motion for the deformed Virasoro algebra. arXiv:0705.0427v2
  18. FH.
    Frenkel E., Hernandez D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. FZ.
    Fomin, S., Zelevinsky, A.: Cluster algebras: notes for CDM-03 conference. In: Current Developments in Mathematics, pp. 1–34. International Press, Somerville, MA (2003)Google Scholar
  20. FM.
    Frenkel E., Mukhin E.: Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216, 23–57 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. FR.
    Frenkel E., Reshetikhin N.: The q-characters of representations of quantum affine algebras and deformations of W algebras, in recent developments in quantum affine algebras and related topics. Contemp. Math. 248, 163–205 (1999)CrossRefMATHGoogle Scholar
  22. FT.
    Feigin B., Tsymbaliuk A.: Heisenberg action in the equivariant K-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. FT2.
    Feigin B., Tsymbaliuk A.: Bethe subalgebras of \({U_q\bigl(\widehat{\mathfrak{gl}}_n\bigr)}\) via shuffle algebras. Sel. Math. New. Sec. 22, 979–1011 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. GKV.
    Ginzburg V., Kapranov M., Vasserot E.: Langlands reciprocity for algebraic surfaces. Math. Res. Lett. 2, 147–160 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. HJ.
    Hernandez D., Jimbo Michio: Asymptotic representations and Drinfel’d rational fractions. Compos. Math. 148(5), 1593–1623 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. HL.
    Hernandez, D., LeClerc, B.: A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules, arXiv:1303.0744
  27. L.
    Litvinov A.V.: On spectrum of ILW hierarchy in conformal field theory. JHEP 11, 155 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. MO.
    Maulik, D., Okounkov, A.: Quantum groups and quantum cohomoolgy, arXiv.1211.1287
  29. M.
    Miki K.: A \({(q,\gamma)}\) analog of the \({W_{1+\infty}}\) algebra. J. Math. Phys. 48(12), 1–35 (2007)MathSciNetCrossRefGoogle Scholar
  30. NPS.
    Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories, arXiv:1312.6689
  31. Ng.
    Negut A.: The shuffle algebra revisited. Int. Math. Res. Not. 22, 6242–6275 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. Ng2.
    Negut, A.: Quantum algebras, shuffle algebras and Hilbert schemes. In: Proceedings of the 17th Workshop “Representation Theory of Algebraic Groups and Quantum Groups”, Toyama, pp. 6242–6275 (2015)Google Scholar
  33. S.
    Schiffmann O.: Drinfeld realization of the elliptic Hall algebra. J. Algebraic Comb. 35(2), 237–262 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. Y.
    Young Ch.: Quantum loop algebras and \({\ell}\)-operators. Transform. Groups 20(4), 1195–1226 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Research University Higher School of EconomicsMoscowRussian Federation
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussian Federation
  3. 3.Department of MathematicsRikkyo UniversityToshima-kuJapan
  4. 4.Institute for Liberal Arts and SciencesKyoto UniversityKyotoJapan
  5. 5.Department of MathematicsIndiana University-Purdue University-IndianapolisIndianapolisUSA

Personalised recommendations