Advertisement

Communications in Mathematical Physics

, Volume 356, Issue 1, pp 107–142 | Cite as

Inverse Scattering for the Magnetic Schrödinger Operator on Surfaces with Euclidean Ends

  • Valter Pohjola
  • Leo TzouEmail author
Article
  • 141 Downloads

Abstract

We prove a fixed frequency inverse scattering result for the magnetic Schrödinger operator (or connection Laplacian) on surfaces with Euclidean ends. We show that, under suitable decaying conditions, the scattering matrix for the operator determines both the gauge class of the connection and the zeroth order potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albin P., Guillarmou C., Tzou L., Uhlmann G.: Inverse boundary problems for systems in two dimensions. Annales Henri Poincaré 6, 1551–1571 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ballesteros M., Weder R.: High-velocity estimates for the scattering operator and Aharonov–Bohm ffect in three dimensions. Commun. Math. Phys. 1, 345–398 (2009)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Ballesteros M., Weder R.: High-velocity estimates for Schrödinger operators in two dimensions: long-range magnetic potentials and time-dependent inverse-scattering. Rev. Math. Phys. 27, 54 (2015)CrossRefzbMATHGoogle Scholar
  4. 4.
    Eskin G., Ralston J.: Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy. Commun. Math. Phys. 173, 199–224 (1995)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Farkas, H.M., Kra, I.: Riemann surfaces. In: Graduate Texts in Mathematics, 2nd edn, vol. 71. Springer, New York (1992)Google Scholar
  6. 6.
    Guillarmou, C., Tzou, L.: Calderón inverse problem for Schrodinger operator on Riemann surfaces. In: Proceedings ANU (2009)Google Scholar
  7. 7.
    Guillarmou C., Tzou L.: Identification of a connection from cauchy data on a Riemann surface with boundary. GAFA 21(2), 393–418 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Guillarmou C., Salo M., Tzou L.: Inverse scattering at fixed energy on surfaces with Euclidean ends. Commun. Math. Phys. 303(3), 761–784 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Imanuvilov O.Y., Uhlmann G., Yamamoto M.: Partial Cauchy data for general second order elliptic operators in two dimensions. Publ. Res. Inst. Math. Sci. 48, 971–1055 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Joshi M.S., Sá Barreto A.: Recovering asymptotics of metrics from fixed energy scattering data. Invent. Math. 137, 127–143 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Joshi M.S., Sá Barreto A.: Inverse scattering on asymptotically hyperbolic manifolds. Acta Math. 184, 41–86 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kobayashi, S.: Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, 15. Kan Memorial Lectures, 5. Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo, pp. xii+305 (1987)Google Scholar
  13. 13.
    Krantz S.G.: Function Theory of Several Complex Variables. AMS Chelsea Publishing, Providence, Rhode Island (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Melrose R.B.: The Atiyah–Patodi–Singer Index Theorem. AK Peters, Wellesley (1993)zbMATHGoogle Scholar
  15. 15.
    Melrose R.B.: Geometric Scattering Theory. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  16. 16.
    Nakamura G., Sun Z., Uhlmann G.: Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field. Math. Ann. 3, 377–388 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Päivärinta L., Salo M., Uhlmann G.: Inverse scattering for the magnetic Schroedinger operator. J. Funct. Anal. 259, 1771–1798 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Salo M.: Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field. Commun. Partial Differ. Equ. 31(10–12), 1639–1666 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tzou, L.: The reflection principle and Calderón problems with partial data, preprintGoogle Scholar
  20. 20.
    Uhlmann G., Vasy A.: Fixed energy inverse problem for exponentially decreasing potentials. Methods Appl. Anal. 9(2), 239–247 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Weder R., Yafaev D.: On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity. Inverse Probl. 21, 1937–1952 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zworski M.: Semiclassical Analysis. American Mathematical Society, Providence, Rhode Island (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of JyvaskylaJyväskyläFinland
  2. 2.University of SydneySydneyAustralia

Personalised recommendations