Communications in Mathematical Physics

, Volume 357, Issue 1, pp 319–351 | Cite as

Quantum Physics, Fields and Closed Timelike Curves: The D-CTC Condition in Quantum Field Theory

  • Jürgen Tolksdorf
  • Rainer VerchEmail author


The D-CTC condition has originally been proposed by David Deutsch as a condition on states of a quantum communication network that contains “backward time-steps” in some of its branches. It has been argued that this is an analogue for quantum processes in the presence of closed timelike curves (CTCs). The unusual properties of states of quantum communication networks that fulfill the D-CTC condition have been discussed extensively in recent literature. In this work, the D-CTC condition is investigated in the framework of quantum field theory in the local, operator-algebraic approach due to Haag and Kastler. It is shown that the D-CTC condition cannot be fulfilled in states that are analytic in the energy, or satisfy the Reeh–Schlieder property, for a certain class of processes and initial conditions. On the other hand, if a quantum field theory admits sufficiently many uncorrelated states across acausally related spacetime regions (as implied by the split property), then the D-CTC condition can always be fulfilled approximately to arbitrary precision. As this result pertains to quantum field theory on globally hyperbolic spacetimes where CTCs are absent, one may conclude that interpreting the D-CTC condition as characteristic for quantum processes in the presence of CTCs could be misleading, and should be regarded with caution. Furthermore, a construction of the quantized massless Klein–Gordon field on the Politzer spacetime, often viewed as spacetime analogue for quantum communication networks with backward time-steps, is proposed in this work.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn D., Myers C.R., Ralph T.C., Mann R.B.: Quantum state cloning in the presence of a closed timelike curve. Phys. Rev. A 88, 022332 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Avis S.J., Isham C.J., Storey D.: Quantum field theory in Anti-de Sitter spacetime. Phys. Rev. D 18, 3565 (1978)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bogoliubov N.N., Logunov A.A., Oksak A.I., Todorov I.: General Principles of Quantum Field Theory. Kluwer, Dordrecht(NL) (1990)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borchers H.-J.: Über die Vollständigkeit lorentzinvarianter Felder in einer zeitartigen Röhre. Nuovo Cim. 19, 787 (1961)ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Bratteli O., Robinson D.W.: Operator Algebras and Quantum Statistical Mechanics, Vol. 1. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brun T.A., Wilde M.M., Winter A.: Quantum state cloning using Deutschian closed timelike curves. Phys. Rev. Lett. 111, 190401 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.): Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015)Google Scholar
  9. 9.
    Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bub J., Stairs A.: Quantum interactions with closed timelike curves and superluminal signalling. Phys. Rev. A 89, 022311 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Buchholz D.: Product states for local algebras. Commun. Math. Phys. 36, 287 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Buchholz D., Florig M., Summers S.J.: Hawking-Unruh temperature and Einstein causality in anti-de Sitter space-time. Class. Quant. Grav. 17, L31–L37 (2000)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Buchholz D., Wichmann E.H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106, 321–344 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chamblin A., Gibbons G.W., Steif A.R.: Kinks and time machines. Phys. Rev. D 50, R2353–R2355 (1994)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Clifton R., Halvorson H.: Generic Bell correlation between arbitrary local algebras in quantum field theory. J. Math. Phys. 41, 1711–1717 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D’Antoni C., Longo R.: Interpolation by type I factors and the flip automorphism. J. Funct. Anal. 51, 361–371 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D’Antoni C., Hollands S.: Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. Commun. Math. Phys. 261, 133–159 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Deutsch D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197 (1991)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Dunlap L.: The metaphysics of D-CTCs: on the underlying assumptions of Deutsch’s quantum solution to the paradoxes of time travel. Stud. Hist. Philos. Sci. B 56, 39–47 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Earman J., Smeenk C., Wuethrich C.: Do the laws of physics forbid the construction of time machines?. Synthese 169, 91–124 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fewster C.J.: The split property for locally covariant quantum field theories in curved spacetime. Lett. Math. Phys. 105(12), 1633–1661 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fewster C.J., Higuchi A.: Quantum field theory on certain nonglobally hyperbolic space-times. Class. Quantum Grav. 13, 51–62 (1996)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    Fewster C.J., Higuchi A., Wells C.G.: Classical and quantum initial value problems for models of chronology violation. Phys. Rev. D 54, 3806–3825 (1996)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Fewster C.J., Verch R.: Stability of quantum systems at three scales: Passivity, quantum weak energy inequalities and the microlocal spectrum condition. Commun. Math. Phys. 240, 329–375 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Fewster, C.J., Verch, R.: Algebraic quantum field theory in curved spacetimes. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.), Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015) (arXiv:1504.00586 [math-ph])
  26. 26.
    Fewster C.J., Verch R.: The necessity of the Hadamard condition. Class. Quantum Grav. 30, 235027 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fredenhagen K.: On the modular structure of local algebras of observables. Commun. Math. Phys. 127, 79–89 (1985)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Friedman J.L, Morris M.S.: Existence and uniqueness theorems for massless fields on a class of spacetimes with closed timelike curves. Commun. Math. Phys. 186, 495–529 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Furlani E.P.: Quantization of massive vector fields on ultrastatic spacetimes. Class. Quantum Grav. 14, 1665–1677 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Goldwirth D.S., Perry M.J., Piran T., Thorne K.S.: The quantum propagator for a non-relativistic particle in the vicinity of a time machine. Phys. Rev. D 49, 3951–3957 (1994)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Guido D., Longo R., Roberts J.E., Verch R.: Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Rev. Math. Phys. 13, 125–198 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Haag R.: Local Quantum Physics. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Haag R.: Irreversibility introduced on a fundamental level. Commun. Math. Phys. 123, 245–252 (1990)ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Haag R.: A thought on the synthesis of quantum physics and general relativity and the role of space-time. Nucl. Phys. B 18, 135–140 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Haag R.: An evolutionary picture for quantum physics. Commun. Math. Phys. 180, 733–743 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Haag R., Narnhofer H., Stein U.: On quantum field theory in gravitational background. Commun. Math. Phys. 94, 219–238 (1984)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Hawking S.W.: The chronology protection conjecture. Phys. Rev. D. D46, 603–611 (1992)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Hollands S., Wald R.M.: Quantum fields in curved spacetime. Phys. Rept. 574, 1–35 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jin W.M.: Quantization of Dirac fields in static spacetime. Class. Quantum Grav. 17, 2949–2964 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Kay B.S.: Linear spin 0 quantum fields in external gravitational and scalar fields. 1. A one-particle structure for the stationary case. Commun. Math. Phys. 62, 55–70 (1978)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Kay, B.S.: The principle of locality and quantum field theory on (non-globally hyperbolic) curved space-times, Rev. Math. Phys. Special Issue, 167–195 (1992)Google Scholar
  43. 43.
    Kay B.S., Radzikowski M.J., Wald R.M.: Quantum field theory on space-times with a compactly generated Cauchy horizon. Commun. Math. Phys. 183, 533–556 (1997)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory, Springer-Verlag, Heidelberg (2015) (arXiv:1412.5945 [math-ph])
  45. 45.
    Lechner G., Verch R.: Linear hyperbolic PDEs with non-commutative time. J. Noncommut. Geom. 9, 999–1040 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y.: Quantum mechanics of time travel through post-selected teleportation. Phys. Rev. D 84, 025007 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Lloyd S., Maccone L., Garcia-Patron R., Giovannetti V., Shikano Y., Pirandola S., Rozema L.A., Darabi A., Soudagar Y., Shalm L.K., Steinberg A.M.: Closed timelike curves via postselection: theory and experimental test of consistency. Phys. Rev. Lett. 106, 040403 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Longo R., Rehren K.-H.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 567–598 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Longo R., Morinelli V., Rehren K.-H.: Where infinite spin particles are localizable. Commun. Math. Phys. 345, 587–614 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Pienaar J.L., Ralph T.C., Myers C.R.: Open timelike curves violate Heisenberg’s uncertainty principle. Phys. Rev. Lett. 110, 060501 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Politzer H.D.: Simple quantum systems with closed timelike curves. Phys. Rev. D 46, 44704476 (1992)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory in curved spacetime. Commun. Math. Phys. 179, 529 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, New York (1975)zbMATHGoogle Scholar
  54. 54.
    Reeh H., Schlieder S.: Bermerkungen zur Unitäräquivalenz von Lorentz-invarianten Feldern. Nouvo Cimento 22, 1051–1068 (1961)ADSCrossRefzbMATHGoogle Scholar
  55. 55.
    Rehren K.-H.: Algebraic holography. Annales Henri Poincaré 1, 607–623 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Ringbauer M., Broome M.A., Myers C.R., White A.G., Ralph T.C.: Experimental simulation of closed timelike curves. Nat. Commun. 5, 4145 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    Sanders K.: On the Reeh–Schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Sanders K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485–501 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That, Revised Edition, Princeton Landmarks in Physics, Princeton, (2000)Google Scholar
  60. 60.
    Strohmaier A.: The Reeh–Schlieder theorem for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Strohmaier A., Verch R., Wollenberg M.: Microlocal analysis of quantum fields on curved spacetimes: analytic wavefront sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Summers S.J.: On the independence of local algebras in quantum field theory. Rev. Math. Phys. 2, 201–247 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507–536 (1994)ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    Verch R.: Antilocality and a Reeh–Schlieder theorem on manifolds. Lett. Math. Phys. 28, 143–154 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Verch R.: Nuclearity, split property and duality for the Klein–Gordon field in curves space-time. Lett. Math. Phys. 29, 297–310 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Verch, R.: Scaling algebras, the renormalization group and the principle of local stability in algebraic quantum field theory. In: Proceedings of the Conference on Operator Algebras and Quantum Field Theory, Rome, Italy, 1–6 July 1996. International Press (1996)Google Scholar
  67. 67.
    Verch R.: Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved space-time. Rev. Math. Phys. 9, 635–674 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Verch R., Werner R.F.: Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545–576 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Wald R.M.: General Relativity. University of Chicago Press, Chicago, IL (1984)CrossRefzbMATHGoogle Scholar
  70. 70.
    Wald R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago, IL (1992)zbMATHGoogle Scholar
  71. 71.
    Wollenberg, M.: Scaling limits and type of local algebras over curved space-time, In: W.B. Arveson, et al. (eds.) Operator algebras and topology. Proceedings, Craiova, 1989, Pitman Research Notes in Mathematics Series, Vol. 270, pp. 179–196. Longman Sci. Tech., Harlow (1992)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  2. 2.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations