Communications in Mathematical Physics

, Volume 357, Issue 1, pp 159–202 | Cite as

\({{SO(d,1)}}\)-Invariant Yang–Baxter Operators and the dS/CFT Correspondence

Open Access


We propose a model for the dS/CFT correspondence. The model is constructed in terms of a “Yang–Baxter operator” R for unitary representations of the de Sitter group \({SO(d,1)}\). This R-operator is shown to satisfy the Yang–Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of \({SO(d,1)}\). By analogy with the O(N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on \({\mathbb{R}^{d-1}}\), where SO(d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret \({\mathbb{R}^{d-1}}\) as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.


  1. AF09.
    Arutyunov G., Frolov S.: Foundations of the \({AdS_5 \times S^5}\) Superstring. Part I. J. Phys. A 42, 254003 (2009)ADSMATHGoogle Scholar
  2. AAR01.
    Abdalla E., Abdalla M., Rothe K.: Non-perturbative methods in two-dimensional quantum field theory. World Scientific, Singapore (2001)CrossRefMATHGoogle Scholar
  3. AFZ79.
    Arinshtein A.E., Fateev V.A., Zamolodchikov A.B.: Quantum S-matrix of the (1 + 1)-dimensional toda chain. Phys. Lett. B 87, 389–392 (1979)ADSCrossRefGoogle Scholar
  4. Ala14.
    Alazzawi, S.: Deformations of quantum field theories and the construction of interacting models. Ph.D. Thesis, University of Vienna (2014). arXiv:1503.00897
  5. Bei12.
    Beisert N. et al.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. Bom16.
    Bombardelli D. et al.: An integrability primer for the gauge–gravity correspondence: an introduction. J. Phys. A 49(32), 320301 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. BBS01.
    Borchers H., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219, 125–140 (2001) arXiv:hep-th/0003243 ADSMathSciNetCrossRefMATHGoogle Scholar
  8. BC12.
    Bostelmann H., Cadamuro D.: An operator expansion for integrable quantum field theories. J. Phys. A: Math. Theor. 46, 095401 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. BFK06.
    Babujian H.M., Foerster A., Karowski M.: The form factor program: a review and new results—the nested SU(N) off-shell bethe ansatz. SIGMA 2, 082 (2006) arXiv:hep-th/0609130 MathSciNetMATHGoogle Scholar
  10. BGL02.
    Brunetti R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002) arXiv:math-ph/0203021 MathSciNetCrossRefMATHGoogle Scholar
  11. BL04.
    Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004) arXiv:math-ph/0402072 ADSMathSciNetCrossRefMATHGoogle Scholar
  12. BLM11.
    Bostelmann H., Lechner G., Morsella G.: Scaling limits of integrable quantum field theories. Rev. Math. Phys. 23, 1115–1156 (2011) arXiv:1105.2781 MathSciNetCrossRefMATHGoogle Scholar
  13. BM96.
    Bros J., Moschella U.: Two-point functions and quantum fields in de Sitter universe. Rev. Math. Phys. 8, 327–392 (1996) arXiv:gr-qc/9511019 MathSciNetCrossRefMATHGoogle Scholar
  14. Bos05.
    Bostelmann H.: Operator product expansions as a consequence of phase space properties. J. Math. Phys. 46, 082304 (2005) arXiv:math-ph/0502004v3 ADSMathSciNetCrossRefMATHGoogle Scholar
  15. BT15.
    Bischoff M., Tanimoto Y.: Integrable QFT and Longo–Witten endomorphisms. Ann. Henri Poincaré 16, 569–608 (2015) arXiv:1305.2171 ADSMathSciNetCrossRefMATHGoogle Scholar
  16. BW76.
    Bisognano J.J., Wichmann E.H.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)ADSMathSciNetCrossRefGoogle Scholar
  17. CDI13.
    Chicherin D., Derkachov S., Isaev A.P.: Conformal algebra: R-matrix and star-triangle relation. JHEP 1304, 20 (2013) arXiv:1206.4150v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. dMH13.
    de Medeiros P., Hollands S.: Conformal symmetry superalgebras. Class. Quant. Grav. 30, 175016 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. DKM01.
    Derkachov S.E., Korchemsky G.P., Manashov A.N.: Noncompact Heisenberg spin magnets from high-energy QCD: I. Baxter Q-operator and Separation of Variables. Nucl. Phys. B 617, 375–440 (2001) arXiv:hep-th/0107193v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  20. DM06.
    Derkachov S.E., Manashov A.N.: R-matrix and baxter Q-operators for the noncompact SL(N,C) invariant spin chain. SIGMA 2, 084 (2006) arXiv:nlin/0612003v1 MathSciNetMATHGoogle Scholar
  21. DM11.
    Derkachov S.E., Manashov A.N.: Noncompact SL(N) spin chains: BGG-resolution, Q-operators and alternating sum representation for finite dimensional transfer matrices. Lett. Math. Phys. 97, 185–202 (2011) arXiv:1008.4734v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  22. Dur70.
    Duren P.: Theory of H p Spaces. Dover Books on Mathematics. Dover Publications, Inc., New York (1970)Google Scholar
  23. EM14.
    Epstein H., Moschella U.: de Sitter tachyons and related topics. Commun. Math. Phys. 336(1), 381–430 (2015) arXiv:1403.3319v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Fad84.
    Faddeev, L.D.: Quantum completely integrable models in field theory, volume~1 of Mathematical Physics Reviews, pp. 107–155 (1984). In Novikov, S.P. (Ed.): Mathematical Physics Reviews, Vol. 1, 107–155Google Scholar
  25. FH81.
    Fredenhagen K., Hertel J.: Local algebras of observables and point-like localized fields. Commun. Math. Phys. 80, 555 (1981)ADSCrossRefMATHGoogle Scholar
  26. FOS83.
    Fröhlich J., Osterwalder K., Seiler E.: On Virtual representations of symmetric spaces and their analytic continuation. Ann. Math. 118, 461–489 (1983) MathSciNetCrossRefMATHGoogle Scholar
  27. GHSS09.
    Guica M., Hartman T., Song W., Strominger A.: The Kerr/CFT correspondence. Phys. Rev. D 80, 124008 (2009). arXiv:0809.4266v1 ADSMathSciNetCrossRefGoogle Scholar
  28. GLW98.
    Guido D., Longo R., Wiesbrock H.: Extensions of conformal nets and superselection structures. Commun. Math. Phys. 192, 217–244 (1998) arXiv:hep-th/9703129 ADSMathSciNetCrossRefMATHGoogle Scholar
  29. GW09.
    Goodman R., Wallach N.R.: Symmetry, Representations, and Invariants. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  30. Haa96.
    Haag R.: Local Quantum Physics—Fields, Particles, Algebras, 2nd edn. Springer, Berlin (1996)MATHGoogle Scholar
  31. Hol12.
    Hollands S.: Massless interacting quantum fields in de Sitter spacetime. Ann. Henri Poincaré 13, 1039–1081 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. Hol13.
    Hollands S.: Correlators, Feynman diagrams, and quantum no-hair in de Sitter spacetime. Commun. Math. Phys. 319, 1–68 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. H98.
    Hull C.M.: Timelike T duality, de Sitter space, large N gauge theories and topological field theory. JHEP 9807, 021 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. Iag93.
    Iagolnitzer D.: Scattering in Quantum Field Theories. Princeton University Press, Princeton (1993)CrossRefMATHGoogle Scholar
  35. Ket00.
    Ketov S.V.: Quantum Non-linear Sigma-Models. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  36. KR86.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II—Advanced Theory (1986)Google Scholar
  37. Lan75.
    Lang S.: SL 2(R). Springer, (1975)Google Scholar
  38. Lec03.
    Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003) arXiv:hep-th/0303062 MathSciNetCrossRefMATHGoogle Scholar
  39. Lec06.
    Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D. Thesis, University of Göttingen (2006). arXiv:math-ph/0611050
  40. Lec15.
    Lechner, G.: Algebraic constructive quantum field theory: integrable models and deformation techniques. In: Brunetti, R. et al. (eds.) Advances in Algebraic Quantum Field Theory, pp. 397–449. Springer, Berlin (2015)Google Scholar
  41. LM95.
    Liguori A., Mintchev M.: Fock spaces with generalized statistics. Lett. Math. Phys. 33, 283–295 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. LS14.
    Lechner G., Schützenhofer C.: Towards an operator-algebraic construction of integrable global gauge theories. Ann. Henri Poincaré 15, 645–678 (2014) arXiv:1208.2366v1 ADSMathSciNetCrossRefMATHGoogle Scholar
  43. Mal98.
    Maldacena J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. MM11.
    Marolf D., Morrison I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. 84, 044040 (2011) arXiv:1010.5327v2 ADSGoogle Scholar
  45. NO14.
    Neeb K.-H., Olafsson G.: Reflection positivity and conformal symmetry. J. Funct. Anal. 266, 2174–2224 (2014) arXiv:1206.2039 MathSciNetCrossRefMATHGoogle Scholar
  46. Sch66.
    Schwartz L.: Theorie des Distributions. Hermann, Paris (1966)MATHGoogle Scholar
  47. Sch95.
    Schmüdgen K.: An operator-theoretic approach to a cocycle problem in the complex plane. Bull. Lond. Math. Soc. 27, 341–346 (1995)MathSciNetCrossRefMATHGoogle Scholar
  48. Smi92.
    Smirnov F.A.: Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore (1992)CrossRefMATHGoogle Scholar
  49. Str01.
    Strominger A.: The dS/CFT Correspondence. JHEP 0110, 341–346 (2001) arXiv:hep-th/0106113v2 Google Scholar
  50. SW00.
    Schroer B., Wiesbrock H.: Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12, 301–326 (2000) arXiv:hep-th/9812251 MathSciNetCrossRefMATHGoogle Scholar
  51. VK91.
    Vilenkin N., Klimyk A.: Representations of Lie Groups and Special Functions Vol. I. Kluwer, Dordrecht (1991)CrossRefMATHGoogle Scholar
  52. Wit98.
    Witten E.: Anti De Sitter Space And Holography. Adv. Theor. Math. Phys. 2, 253–291 (1998) arXiv:hep-th/9802150v2 ADSMathSciNetCrossRefMATHGoogle Scholar
  53. Zam78.
    Zamolodchikov A.: Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry. Nucl. Phys. B 133, 525–535 (1978)ADSMathSciNetCrossRefGoogle Scholar
  54. Zam79.
    Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models. Ann. Phys. 120, 253–291 (1979)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität LeipzigLeipzigGermany
  2. 2.School of MathematicsCardiff UniversityCardiffUK

Personalised recommendations