Communications in Mathematical Physics

, Volume 355, Issue 2, pp 741–766 | Cite as

An Elliptic Garnier System

Article
  • 74 Downloads

Abstract

We present a linear system of difference equations whose entries are expressed in terms of theta functions. This linear system is singular at \({4m+12}\) points for \({m \geq 1}\), which appear in pairs due to a symmetry condition. We parameterize this linear system in terms of a set of kernels at the singular points. We regard the system of discrete isomonodromic deformations as an elliptic analogue of the Garnier system. We identify the special case in which m = 1 with the elliptic Painlevé equation; hence, this work provides an explicit form and Lax pair for the elliptic Painlevé equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff G.D.: General theory of linear difference equations. Trans. Am. Math. Soc. 12(2), 243–284 (1911)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Birkhoff G.D.: The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations. Proc. Am. Acad. 49, 512–568 (1913)CrossRefGoogle Scholar
  3. 3.
    Birkhoff G.D., Guenther P.E.: Note on a canonical form for the linear q-difference system. Proc. Natl. Acad. Sci. USA 27, 218–222 (1941)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Borodin A.: Isomonodromy transformations of linear systems of difference equations. Ann. Math. (2) 160(3), 1141–1182 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Etingof P.: Galois groups and connection matrices of q-difference equations. Electron. Res. Announc. Am. Math. Soc. 1(1), 1–9 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fuchs R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 63(3), 301–321 (1907)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fuchs R.: Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math. Ann. 70(4), 525–549 (1911)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garnier R.: Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Ann. Sci. Éc. Norm. Sup. (3) 29, 1–126 (1912)CrossRefMATHGoogle Scholar
  9. 9.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, Volume 35 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990). With a foreword by Richard AskeyGoogle Scholar
  10. 10.
    Jimbo M., Sakai H.: A qAnalog of the sixth Painlevé equation. Lett. Math. Phys. 38(2), 145–154 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y.: 10E 9 solution to the elliptic Painlevé equation. J. Phys. A 36(17), L263–L272 (2003)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Krichever I.M.: Analytic theory of difference equations with rational and elliptic coefficients and the Riemann–Hilbert problem. Russ. Math. Surv. 59(6), 1117 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mumford, D.: Tata Lectures on Theta I (Progress in Mathematics, vol 28). Birkhäuser, Boston (1983)Google Scholar
  14. 15.
    Nijhoff, F.W., Delice, N.: On elliptic Lax pairs and isomonodromic deformation systems for elliptic lattice equations. arXiv preprint arXiv:1605.00829 (2016)
  15. 16.
    Noumi, M., Tsujimoto, S., Yamada, Y.: Padé interpolation for elliptic Painlevé equation. In: Ohara, K. et al. (eds.) Symmetries, Integrable Systems, and Representations, pp. 463–482. Springer, London (2013)Google Scholar
  16. 17.
    Okamoto, K.: Isomonodromic deformation and Painlevé equations, and the Garnier system. Université Louis Pasteur, Institut de Recherche Mathématique Avancée (1981)Google Scholar
  17. 18.
    Okounkov, A., Rains, E.: Noncommutative geometry and Painlevé equations. Algebra Number Theory 9, 1363–1400 (2015)Google Scholar
  18. 19.
    Ormerod, C.M.: The lattice structure of connection preserving deformations for q-Painlevé equations I. SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 045 (2011)Google Scholar
  19. 20.
    Ormerod, C.M., Rains, E.M.: Commutation relations and discrete Garnier systems. SIGMA 12, 110 (2016)Google Scholar
  20. 21.
    Ormerod, C.M., Rains, E.M.: A symmetric difference-differential Lax pair for Painlevé VI. J. Integrable Syst. 2(1), xyx003 (2017)Google Scholar
  21. 22.
    Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A.: Isomonodromic deformation problems for discrete analogues of Painlevé equations. Phys. Lett. A 164(1), 57–64 (1992)ADSMathSciNetCrossRefGoogle Scholar
  22. 23.
    Praagman C.: Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems. J. Reine Angew. Math. 369, 101–109 (1986)MathSciNetMATHGoogle Scholar
  23. 24.
    Rains, E.M.: The noncommutative geometry of elliptic difference equations. arXiv:1607.08876
  24. 25.
    Rains, E.M.: An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations). SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 088 (2011)Google Scholar
  25. 26.
    Rains, E.M.: Generalized Hitchin systems on rational surfaces. arXiv preprint arXiv:1307.4033 (2013)
  26. 27.
    Rains E.M., Spiridonov V.P.: Determinants of elliptic hypergeometric integrals. Funct. Anal. Appl. 43(4), 297–311 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 28.
    Sakai H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)ADSCrossRefMATHGoogle Scholar
  28. 29.
    Sakai H.: A q-analog of the Garnier system. Funkc. Ekvac. 48(2), 273–297 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 30.
    Sauloy, J.: Galois theory of Fuchsian q-difference equations. Ann. Sci. Éc. Norm. Sup. (4), 36(6), 925–968 (2004)Google Scholar
  30. 31.
    van der Put, M., Singer M.F.: Galois theory of difference equations, volume 1666 of Lecture Notes in Mathematics. Springer, Berlin (1997)Google Scholar
  31. 32.
    van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations, vol. 328. Springer, Berlin (2003)Google Scholar
  32. 33.
    Yamada, Y., et al.: A Lax formalism for the elliptic difference Painlevé equation. SIGMA 5(042), 15 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MaineOronoUSA
  2. 2.CaltechPasadenaUSA

Personalised recommendations