Communications in Mathematical Physics

, Volume 355, Issue 1, pp 97–144 | Cite as

BV Quantization of the Rozansky–Witten Model



We investigate the perturbative aspects of Rozansky–Witten’s 3d \({\sigma}\)-model (Rozansky and Witten in Sel Math 3(3):401–458, 1997) using Costello’s approach to the Batalin–Vilkovisky (BV) formalism (Costello in Renormalization and effective field theory, American Mathematical Society, Providence, 2011). We show that the BV quantization (in Costello’s sense) of the model, which produces a perturbative quantum field theory, can be obtained via the configuration space method of regularization due to Kontsevich (First European congress of mathematics, Paris, 1992) and Axelrod–Singer (J Differ Geom 39(1):173–213, 1994). We also study the factorization algebra structure of quantum observables following Costello–Gwilliam (Factorization algebras in quantum field theory, Cambridge University Press, Cambridge 2017). In particular, we show that the cohomology of local quantum observables on a genus g handle body is given by \({H^*(X, (\wedge^*T_X)^{\otimes g})}\) (where X is the target manifold), and we prove that the partition function reproduces the Rozansky–Witten invariants.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah M.F., Bott R.: A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math. 86(2), 374–407 (1967)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Axelrod S., Singer I.M.: Chern–Simons perturabation theory. II. J. Differ. Geom. 39(1), 173–213 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Ayala D., Francis J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bott R., Cattaneo A.: Integral invariants of 3-manifolds. J. Differ. Geom. 48(1), 91–133 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cattaneo A., Mnëv P.: Remarks on Chern–Simons invariants. Commun. Math. Phys. 293(3), 803–836 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Costello, K.: Renormalization and Effective Field Theory, Mathematical Surveys and Monographs, vol. 170, pp. viii+251, American Mathematical Society, Providence, RI (2011)Google Scholar
  7. 7.
    Costello, K.: A geometric construction of the Witten genus, II, arXiv:1111.4234 [math.QA]
  8. 8.
    Costello, K.: Renormalization and the Batalin–Vilkovisky formalism, arXiv:0706.1533 [math.QA]
  9. 9.
    Costello K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl. Math. Q. 9(1), 73–165 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Costello K., Gwilliam O.: Factorization Algebras in Quantum Field Theory, vol. I & II. Cambridge University Press, Cambridge (2017)CrossRefMATHGoogle Scholar
  11. 11.
    Fedosov B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Grady, R., Li, Q., Li, S.: BV quantization and the algebraic index, arXiv:1507.01812 [math.QA]
  13. 13.
    Habegger N., Thompson G.: The universal perturbative quantum 3-manifold invariant, Rozansky–Witten invariants and the generalized Casson invariant. Acta Math. Vietnam 33(3), 363–419 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Hitchin N., Sawon J.: Curvature and characteristic numbers of hyper-Kähler manifolds. Duke Math. J. 106(3), 599–615 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Källén J., Qiu J., Zabzine M.: Equivariant Rozansky–Witten classes and TFTs. J. Geom. Phys. 64, 222–242 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kapranov M.: Rozansky–Witten invariants via Atiyah classes. Compos. Math. 115(1), 71–113 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 2021–2043, (2010)Google Scholar
  18. 18.
    Kapustin A., Rozansky L., Saulina N.: Three-dimensional topological field theory and symplectic algebraic geometry I. Nucl. Phys. B. 816(3), 295–355 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kapustin A., Rozansky L.: Three-dimensional topological field theory and symplectic algebraic geometry II. Commun. Number Theory Phys. 4(3), 463–549 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kapustin A., Saulina N.: Chern–Simons–Rozansky–Witten topological field theory. Nucl. Phys. B 823(3), 403–427 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kontsevich, M.: Lectures at Harvard UniversityGoogle Scholar
  22. 22.
    Kontsevich, M.: Feynman diagrams and low-dimensional topology. First European Congress of Mathematics, vol. II (Paris, 1992), Progr. Math. 120:97–121, Birkhäuser, Basel (1994)Google Scholar
  23. 23.
    Kontsevich M.: Rozansky–Witten invariants via formal geometry. Compos. Math. 115(1), 115–127 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li Q., Li S.: On the B-twisted topological sigma model and Calabi-Yau geometry. J. Different. Geom. 102(3), 409–484 (2016)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Li, S.: Personal communicationsGoogle Scholar
  26. 26.
    Nguyen, T.: Quantization of the nonlinear sigma model revisited. J. Math. Phys. 57(8), 082301, 40 (2016)Google Scholar
  27. 27.
    Qiu J., Zabzine M.: Odd Chern–Simons theory, Lie algebra cohomology and characteristic classes. Comm. Math. Phys. 300(3), 789–833 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Qiu J., Zabzine M.: Knot invariants and new weight systems from general 3D TFTs. J. Geom. Phys. 62(2), 242–271 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Roberts, J., Sawon, J.: Generalisations of Rozansky-Witten invariants, Invariants of Knots and 3-Manifolds (Kyoto, 2001), Geom. Topol. Monogr. 4, 263–279 (electronic), Geometry and Topology Publications, Coventry (2002)Google Scholar
  30. 30.
    Roberts J., Willerton S.: On the Rozansky–Witten weight systems Algebr. Geom. Topol. 10(3), 1455–1519 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Rozansky L., Witten E.: Hyper-Kähler geometry and invariants of three-manifolds. Sel. Math. 3(3), 401–458 (1997)CrossRefMATHGoogle Scholar
  32. 32.
    Sawon, J.: Rozansky–Witten invariants of hyperkähler manifolds, Thesis (Ph.D.), University of Cambridge (1999)Google Scholar
  33. 33.
    Sawon J.: Topological quantum field theory and hyperkähler geometry. Turk. J. Math. 25(1), 169–194 (2001)ADSMathSciNetMATHGoogle Scholar
  34. 34.
    Teleman, C.: Gauge theory and mirror symmetry, arXiv:1404.6305 [math-ph]
  35. 35.
    Thompson G.: Holomorphic vector bundles, knots and the Rozansky–Witten invariants. Adv. Theor. Math. Phys. 5(3), 457–481 (2001)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Voglaire Y., Xu P.: Rozansky–Witten-type invariants from symplectic Lie pairs Comm. Math. Phys. 336(1), 217–241 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsThe Chinese University of Hong KongShatinHong Kong
  2. 2.The Institute of Mathematical Sciences and Department of MathematicsThe Chinese University of Hong KongShatinHong Kong
  3. 3.Department of MathematicsSouthern University of Science and TechnologyShenzhenChina

Personalised recommendations