Advertisement

Communications in Mathematical Physics

, Volume 354, Issue 2, pp 459–475 | Cite as

A Continuous Family of Equilibria in Ferromagnetic Media are Ground States

  • Xifeng SuEmail author
  • Rafael de la Llave
Article

Abstract

We show that a foliation of equilibria (a continuous family of equilibria whose graph covers all the configuration space) in ferromagnetic transitive models are ground states. The result we prove is very general, and it applies to models with long range and many-body interactions. As an application, we consider several models of networks of interacting particles including models of Frenkel–Kontorova type on \({\mathbb{Z}^d}\) and one-dimensional quasi-periodic media. The result above is an analogue of several results in the calculus of variations (fields of extremals) and in PDE’s. Since the models we consider are discrete and long range, new proofs need to be given. We also note that the main hypothesis of our result (the existence of foliations of equilibria) is the conclusion (using KAM theory) of several recent papers. Hence, we obtain that the KAM solutions recently established are minimizers when the interaction is ferromagnetic and transitive (these concepts are defined later).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGK16.
    Armstrong, S.N., Gloria, A., Kuusi, T.: Bounded correctors in almost periodic homogeneization. Arch. Ration. Mech. Anal. 222(1), 393–426 (2016). doi: 10.1007/s00205-016-1004-0
  2. ALD83.
    Aubry S., Le Daeron P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8(3), 381–422 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. AS16.
    Armstrong S.N., Smart C.K.: Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. Éc. Norm. Supér. (4) 49(2), 423–481 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Aub84.
    Aubry, S.: Trajectories of the twist map with minimal action and connection with incommensurate structures. Phys. Rep. 103(1-4):127–141, 1984. Common trends in particle and condensed matter physics (Les Houches, 1983)Google Scholar
  5. BdlL13.
    Blass T., de la Llavede R.: The analyticity breakdown for Frenkel–Kontorova models in quasi-periodic media: numerical explorations. J. Stat. Phys. 150(6), 1183–1200 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. BK04.
    Braun O.M., Kivshar Y.S.: The Frenkel–Kontorova Model. Texts and Monographs in Physics. Springer, Berlin (2004)Google Scholar
  7. Bla89.
    Blank M.L.: Metric properties of minimal solutions of discrete periodical variational problems. Nonlinearity 2(1), 1–22 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. Bla90.
    Blank M.L.: Chaos and order in the multidimensional Frenkel–Kontorova model. Teor. Mat. Fiz. 85(3), 349–367 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. BM08.
    Bondy J.A., Murty U.S.R.: Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, New York (2008)Google Scholar
  10. Bol98.
    Bollobás B.: Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer, New York (1998)Google Scholar
  11. Car99.
    Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Translated from the German by Robert B. Dean, Julius J. Brandstatter, translating editor. AMS Chelsea Publishing (1999)Google Scholar
  12. CC10.
    Calleja R., Celletti A.: Breakdown of invariant attractors for the dissipative standard map. Chaos 20(1), 013121, 9 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. CCdlL13.
    Calleja R.C., Celletti A., de la Llave R.: A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J. Differ. Equ. 255(5), 978–1049 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. CdlL98.
    Candel A., de la Llave R.: On the Aubry–Mather theory in statistical mechanics. Commun. Math. Phys. 192(3), 649–669 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. CdlL01.
    Caffarelli L.A., de la Llave R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. CF12.
    Calleja R., Figueras J.-L.: Collision of invariant bundles of quasi-periodic attractors in the dissipative standard map. Chaos 22(3), 033114, 10 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. CM07.
    Celletti A., MacKay R.: Regions of nonexistence of invariant tori for spin-orbit models. Chaos 17(4), 043119, 12 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Dav13.
    Dávila G.: Plane-like minimizers for an area-Dirichlet integral. Arch. Ration. Mech. Anal. 207(3), 753–774 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. dlL08.
    de la Llave R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9(5), 835–880 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. dlLSZ16.
    de la Llave R., Su X., Zhang L.: Resonant equilibrium configurations in quasi-periodic media: perturbative expansions. J. Stat. Phys. 162(6), 1522–1538 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. dlLSZ17.
    de la Llave R., Su X., Zhang L.: Resonant equilibrium configurations in quasi-periodic media: KAM theory. SIAM J. Math. Anal. 49(1), 597–625 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. dlLV07a.
    de la Llave R., Valdinoci E.: Critical points inside the gaps of ground state laminations for some models in statistical mechanics. J. Stat. Phys. 129(1), 81–119 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. dlLV07b.
    de la Llave R., Valdinoci E.: Ground states and critical points for generalized Frenkel–Kontorova models in \({\mathbb{Z}^d}\). Nonlinearity 20(10), 2409–2424 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. dlLV09.
    de la Llave R., Valdinoci E.: A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(4), 1309–1344 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. dlLV10.
    de la Llave R., Valdinoci E.: Ground states and critical points for Aubry–Mather theory in statistical mechanics. J. Nonlinear Sci. 20(2), 153–218 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. FK39.
    Frenkel J., Kontorova T.: On the theory of plastic deformation and twinning. Acad. Sci. URSS J. Physics 1, 137–149 (1939)MathSciNetzbMATHGoogle Scholar
  27. KdlLR97.
    Koch H., de la Llave R., Radin C.: Aubry–Mather theory for functions on lattices. Discrete Contin. Dyn. Syst. 3(1), 135–151 (1997)MathSciNetzbMATHGoogle Scholar
  28. KV08.
    Kosygina E., Varadhan S.R.S.: Homogenization of Hamilton–Jacobi–Bellman equations with respect to time–space shifts in a stationary ergodic medium. Commun. Pure Appl. Math. 61(6), 816–847 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. LS03.
    Lions P.-L., Souganidis P.E.: Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting. Commun. Pure Appl. Math. 56(10), 1501–1524 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Mac89.
    MacKay R.S.: A criterion for nonexistence of invariant tori for Hamiltonian systems. Phys. D 36(1-2), 64–82 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  31. Man97.
    Mañé R.: Lagrangian flows: the dynamics of globally minimizing orbits. Bol. Soc. Bras. Mat. (N.S.) 28(2), 141–153 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Mat82.
    Mather J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21(4), 457–467 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  33. Mat91.
    Mather J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207(2), 169–207 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  34. Mor24.
    Morse H.M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26(1), 25–60 (1924)MathSciNetCrossRefzbMATHGoogle Scholar
  35. Mos86.
    Moser J.: Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3), 229–272 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. Mos89.
    Moser, J.: Minimal foliations on a torus. In: Topics in calculus of variations (Montecatini Terme, 1987), volume 1365 of Lecture Notes in Mathematice, pp. 62–99. Springer, Berlin, 1989Google Scholar
  37. MS92.
    Moser J., Struwe M.: On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus. Bol. Soc. Bras. Mat. (N.S.) 23(1-2), 1–20 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  38. MS16.
    Maró, S., Sorrentino A.: Aubry–Mather theory for conformally symplectic systems (2016). arXiv:1607.02943
  39. NP83.
    Newman, R.P.A.C., Percival I.C.: Definite paths and upper bounds on regular regions of velocity phase space. Phys. D 6(2), 249–259 (1982/83)Google Scholar
  40. Pre09.
    Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)Google Scholar
  41. RS11.
    Rabinowitz, P.H., Stredulinsky, E.W.: Extensions of Moser–Bangert Theory. Progress in Nonlinear Differential Equations and Their Applications, 81. Birkhäuser/Springer, New York. Locally Minimal Solutions (2011)Google Scholar
  42. Rue69.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York (1969)Google Scholar
  43. SdlL12a.
    Su X., de la Llave R.: KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions. J. Phys. A 45(45), 455203, 24 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  44. SdlL12b.
    Su X., de la Llave R.: KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. 44(6), 3901–3927 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  45. Sel92.
    Selke W.: Spatially modulated structures in systems with competing interactions. In: Phase Transitions and Critical Phenomena, volume 15, pp. 1–72. Academic Press (1992)Google Scholar
  46. Suh65.
    Suhl, H.: Magnetism. A Treatise on Modern Theory and Materials. Vol. II. Statistical Models, Magnetic Symmetry, Hyperfine Interactions, and Metals. Part A. G.T. Rado, G.T., Suhl, H. (eds.) Academic Press, New York (1965)Google Scholar
  47. Tor04.
    Torres M.: Plane-like minimal surfaces in periodic media with exclusions. SIAM J. Math. Anal. 36(2), 523–551 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  48. Val04.
    Valdinoci E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574, 147–185 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.JLU-GT Joint Institute for Theoretical ScienceJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations