Advertisement

Communications in Mathematical Physics

, Volume 353, Issue 3, pp 1179–1199 | Cite as

Conformal Flow on S3 and Weak Field Integrability in AdS4

  • Piotr BizońEmail author
  • Ben Craps
  • Oleg Evnin
  • Dominika Hunik
  • Vincent Luyten
  • Maciej Maliborski
Open Access
Article

Abstract

We consider the conformally invariant cubic wave equation on the Einstein cylinder \({\mathbb{R} \times \mathbb{S}^3}\) for small rotationally symmetric initial data. This simple equation captures many key challenges of nonlinear wave dynamics in confining geometries, while a conformal transformation relates it to a self-interacting conformally coupled scalar in four-dimensional anti-de Sitter spacetime (AdS4) and connects it to various questions of AdS stability. We construct an effective infinite-dimensional time-averaged dynamical system accurately approximating the original equation in the weak field regime. It turns out that this effective system, which we call the conformal flow, exhibits some remarkable features, such as low-dimensional invariant subspaces, a wealth of stationary states (for which energy does not flow between the modes), as well as solutions with nontrivial exactly periodic energy flows. Based on these observations and close parallels to the cubic Szegő equation, which was shown by Gérard and Grellier to be Lax-integrable, it is tempting to conjecture that the conformal flow and the corresponding weak field dynamics in AdS4 are integrable as well.

References

  1. 1.
    Zakharov V.E., L’vov V.S., Falkovich G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  2. 2.
    Nazarenko S.: Wave Turbulence. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181, 39 (2010). arXiv:0808.1742 [math.AP]
  4. 4.
    Hani, Z.: Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 211, 929 (2014). arXiv:1210.7509 [math.AP]
  5. 5.
    Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 71 (2015). arXiv:1205.5188 [math.AP]
  6. 6.
    Bizoń, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011). arXiv:1104.3702 [gr-qc]
  7. 7.
    Bizoń, P.: Is AdS stable? Gen. Rel. Grav. 46, 1724 (2014). arXiv:1312.5544 [gr-qc]
  8. 8.
    Craps, B., Evnin, O.: AdS (in)stability: an analytic approach. Fortsch. Phys. 64, 336 (2016). arXiv:1510.07836 [gr-qc]
  9. 9.
    Basu, P., Krishnan, C., Saurabh, A.: A stochasticity threshold in holography and the instability of AdS. Int. J. Mod. Phys. A 30, 1550128 (2015). arXiv:1408.0624 [hep-th]
  10. 10.
    Murdock J.A.: Perturbations: Theory and Methods. SIAM, Philadelphia (1987)zbMATHGoogle Scholar
  11. 11.
    Kuksin, S., Maiocchi, A.: The effective equation method. In: New Approaches to Nonlinear Waves. Springer, Berlin (2016). arXiv:1501.04175 [math-ph]
  12. 12.
    Balasubramanian, V., Buchel, A., Green, S. R., Lehner, L., Liebling, S. L.: Holographic thermalization, stability of anti-de Sitter space, and the Fermi-Pasta-Ulam paradox. Phys. Rev. Lett. 113, 071601 (2014). arXiv:1403.6471 [hep-th]
  13. 13.
    Craps, B., Evnin, O., Vanhoof, J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 1410 (2014) 48. arXiv:1407.6273 [gr-qc]
  14. 14.
    Craps, B., Evnin, O., Vanhoof, J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 1501 (2015) 108. arXiv:1412.3249 [gr-qc]
  15. 15.
    Lakshmanan M., Sahadevan R.: Painlevé analysis, Lie symmetries and integrability of coupled nonlinear oscillators of polynomial type. Phys. Rep. 224, 1 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Bruschi M., Calogero F.: Integrable systems of quartic oscillators. Phys. Lett. A 273, 173 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bruschi, M., Calogero, F.: Integrable systems of quartic oscillators II. Phys. Lett. A 327, 320 (2004). arXiv:nlin/0403011 [nlin.SI]
  18. 18.
    Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Scient. Éc. Norm. Sup. 43, 761 (2010). arXiv:0906.4540 [math.CV]
  19. 19.
    Gérard, P., Grellier, S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139 (2012). arXiv:1110.5719 [math.AP]
  20. 20.
    Gérard, P., Grellier, S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979 (2015). arXiv:1304.2619 [math.AP]
  21. 21.
    Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. arXiv:1508.06814 [math.AP]
  22. 22.
    Majda A.J., McLaughlin D.W., Tabak E.G.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hani, Z., Thomann, L.: Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping. Commun. Pur. App. Math. 69, 1727 (2016). arXiv:1408.6213 [math.AP]
  24. 24.
    Faou, E., Germain, P., Hani, Z.: The weakly nonlinear large box limit of the 2D cubic nonlinear Schrödinger equation. J. Am. Math. Soc. 29, 915 (2016). arXiv:1308.6267 [math.AP]
  25. 25.
    Germain, P., Hani, Z., Thomann, L.: On the continuous resonant equation for NLS: I. Deterministic analysis. J. Math. Pure Appl. 105, 131 (2016). arXiv:1501.03760 [math.AP]
  26. 26.
    Germain, P., Thomann, L.: On the high frequency limit of the LLL equation. Quart. Appl. Math. 74, 633 (2016). arXiv:1509.09080 [math.AP]
  27. 27.
    Beisert, N. et al.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3 (2012). arXiv:1012.3982 [hep-th]
  28. 28.
    Yang, I-S.: Missing top of the AdS resonance structure. Phys. Rev. D 91, 065011 (2015). arXiv:1501.00998 [hep-th]
  29. 29.
    Evnin, O., Nivesvivat, R.: AdS perturbations, isometries, selection rules and the Higgs oscillator. JHEP 1601, 151 (2016). arXiv:1512.00349 [hep-th]
  30. 30.
    Garnett J.B.: Bounded Analytic Functions. Springer, Berlin (2007)zbMATHGoogle Scholar
  31. 31.
    Green, S. R., Maillard, A., Lehner, L., Liebling, S. L.: Islands of stability and recurrence times in AdS. Phys. Rev. D 92, 084001 (2015). arXiv:1507.08261 [gr-qc]
  32. 32.
    Craps, B., Evnin, O., Jai-akson, P., Vanhoof, J.: Ultraviolet asymptotics for quasiperiodic AdS 4 perturbations. JHEP 1510, 080 (2015). arXiv:1508.05474 [gr-qc]
  33. 33.
    Maliborski, M., Rostworowski, A.: Time-periodic solutions in an Einstein AdS-Massless-Scalar-Field system. Phys. Rev. Lett. 111, 051102 (2013). arXiv:1303.3186 [gr-qc]

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Piotr Bizoń
    • 1
    • 4
    Email author
  • Ben Craps
    • 2
  • Oleg Evnin
    • 2
    • 3
  • Dominika Hunik
    • 1
  • Vincent Luyten
    • 2
  • Maciej Maliborski
    • 4
  1. 1.Institute of PhysicsJagiellonian UniversityKrakówPoland
  2. 2.Theoretische NatuurkundeVrije Universiteit Brussel and The International Solvay InstitutesBrusselsBelgium
  3. 3.Department of Physics, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  4. 4.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations