Communications in Mathematical Physics

, Volume 354, Issue 1, pp 231–246 | Cite as

Uniqueness of the Representation in Homogeneous Isotropic LQC

  • Jonathan Engle
  • Maximilian Hanusch
  • Thomas Thiemann
Article

Abstract

We show that the standard representation of homogeneous isotropic loop quantum cosmology (LQC) is the GNS-representation that corresponds to the unique state on the reduced quantum holonomy-flux *-algebra that is invariant under residual diffeomorphisms—both when the standard algebra is used as well as when one uses the extended algebra proposed by Fleischhack. More precisely, we find that in both situations the GNS-Hilbert spaces coincide, and that in the Fleischhack case the additional algebra elements are just mapped to zero operators. In order for the residual diffeomorphisms to have a well-defined action on the quantum algebra, we have let them act on the fiducial cell as well as on the dynamical variables, thereby recovering covariance. Consistency with Ashtekar and Campilgia in the Bianchi case is also shown.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agullo I., Ashtekar A., Nelson W.: The pre-inflationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations. Class. Quant. Grav. 30, 085014. (2013) arXiv:1302.0254 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ashtekar A., Barrau A.: Loop quantum cosmology: From pre-inflationary dynamics to observations. Class. Quantum Gravity 32, 234001. (2015) arXiv:1504.07559 (gr-qc)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Ashtekar A., Bojowald M., Lewandowski J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233–268 (2003). arXiv:gr-qc/0304074 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ashtekar A., Campiglia M.: On the uniqueness of kinematics of loop quantum cosmology. Class. Quantum Grav. 29, 242001. (2012) arXiv:1209.4374 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ashtekar A., Lewandowski J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53–R152. (2004) arXiv:gr-qc/0404018 ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ashtekar A., Singh P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001. (2011) arXiv:1108.0893 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ashtekar A., Wilson-Ewing E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D. 79, 083535. (2009) arXiv:0903.3397 (gr-qc)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Barbero G.J.F.: Real ashtekar variables for lorentzian signature space-times. Phys. Rev. D 51, 5507–5510. (1995) arXiv:gr-qc/9410014 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Barrau A., Cailleteau T., Grain J., Mielczarek J.: Observational issues in loop quantum cosmology. Class. Quantum Gravity 31, 053001. (2014) arXiv:1309.6896 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bojowald M., Calcagni G., Tsujikawa S.: Observational test of inflation in loop quantum cosmology. JCAP 1111, 046. (2011) arXiv:1107.1540 (gr-qc)ADSCrossRefGoogle Scholar
  11. 11.
    Bojowald M., Kastrup H.A.: Quantum symmetry reduction for diffeomorphism invariant theories of connections. Class. Quantum Gravity 17, 3009. (2000) arXiv:gr-qc/9907042 ADSCrossRefMATHGoogle Scholar
  12. 12.
    Dirac P.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)MATHGoogle Scholar
  13. 13.
    Engle J.: Relating loop quantum cosmology to loop quantum gravity: Symmetric sectors and embeddings. Class. Quantum Gravity 24, 5777–5802. (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Engle J., Hanusch M.: Kinematical uniqueness of homogeneous isotropic LQC. Class. Quantum Gravity 34, 014001. (2017) arXiv:1604.08199 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fleischhack, Ch.: Loop Quantization and symmetry: configuration spaces. arXiv:1010.0449 (math-ph)
  16. 16.
    Holst S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966–5969. (1996) arXiv:gr-qc/9511026 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Immirzi G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177–L181. (1995) arXiv:gr-qc/9612030 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lewandowski J., Okolow A., Sahlmann H., Thiemann T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733. (2006) arXiv:gr-qc/0504147 (gr-qc)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rovelli C.: Quantum Gravity. Cambridge UP, Cambridge (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Thiemann T.: Modern Canonical Quantum General Relativity. Cambridge UP, Cambridge (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Institute for Quantum GravityFriedrich-Alexander University Erlangen-NürnburgErlangenGermany

Personalised recommendations