Communications in Mathematical Physics

, Volume 351, Issue 1, pp 1–44 | Cite as

Determinantal Point Processes Associated with Hilbert Spaces of Holomorphic Functions

  • Alexander I. Bufetov
  • Yanqi Qiu


We study determinantal point processes on \({\mathbb{C}}\) induced by the reproducing kernels of generalized Fock spaces as well as those on the unit disc \({\mathbb{D}}\) induced by the reproducing kernels of generalized Bergman spaces. In the first case, we show that all reduced Palm measures of the same order are equivalent. The Radon–Nikodym derivatives are computed explicitly using regularized multiplicative functionals. We also show that these determinantal point processes are rigid in the sense of Ghosh and Peres, hence reduced Palm measures of different orders are singular. In the second case, we show that all reduced Palm measures, of all orders, are equivalent. The Radon–Nikodym derivatives are computed using regularized multiplicative functionals associated with certain Blaschke products. The quasi-invariance of these determinantal point processes under the group of diffeomorphisms with compact supports follows as a corollary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bufetov, A.I.: Quasi-Symmetries of Determinantal Point Processes. arXiv:1409.2068 (Nov 2016)
  2. 2.
    Bufetov A.I.: On multiplicative functionals of determinantal processes. Uspekhi Mat. Nauk 67(1(403)), 177–178 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bufetov A.I.: Infinite determinantal measures. Electron. Res. Announc. Math. Sci. 20, 12–30 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bufetov A.I.: Rigidity of determinantal point processes with the Airy, the Bessel and the Gamma kernel. Bull. Math. Sci. 6(1), 163–172 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bufetov, A.I., Dabrowski, Y., Qiu, Y.: Linear rigidity of stationary stochastic processes. arXiv:1507.00670 (to appear in Ergod. Theory Dyn. Syst.)
  6. 6.
    Bufetov, A.I., Qiu, Y.: Conditional measures of generalized Ginibre point processes. arXiv:1608.03736 (Aug 2016)
  7. 7.
    Bufetov A.I., Qiu Yanqi: Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions. C. R. Math. Acad. Sci. Paris 353(6), 551–555 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Christ M.: On the \({\overline\partial}\) equation in weighted L 2 norms in C 1. J. Genom. Anal. 1(3), 193–230 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II. Probability and Its Applications (New York), 2nd edn. Springer, New York (2008) (General theory and structure)Google Scholar
  10. 10.
    Delin H.: Pointwise estimates for the weighted Bergman projection kernel in C n, using a weighted L 2 estimate for the \({\overline\partial}\) equation. Ann. Inst. Fourier 48(4), 967–997 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ferguson, T.: Regularity of extremal functions in weighted Bergman and Fock type spaces. arXiv:1411.1979 (Nov 2014)
  12. 12.
    Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3–4), 643–665 (2015)Google Scholar
  13. 13.
    Ghosh, S., Peres, Y.: Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. arXiv:1211.3506 (to appear in Duke Math. J.)
  14. 14.
    Holroyd, A.E., Soo, T.: Insertion and deletion tolerance of point processes. Electron. J. Probab. 18(74), 1–24 (2013)Google Scholar
  15. 15.
    Hough J.B., Krishnapur M., Peres Y., Virág B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kallenberg O.: Random Measures, 4th edn. Akademie, Academic Press, Inc., Berlin, London (1986)Google Scholar
  17. 17.
    Lin P., Rochberg R.: Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pac. J. Math. 173(1), 127–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)Google Scholar
  19. 19.
    Macchi O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mehta, M.L.: Random Matrices. Pure and Applied Mathematics, vol. 142, xviii+688 pp. Academic Press, Amsterdam (2004)Google Scholar
  21. 21.
    Olshanski G.: The quasi-invariance property for the Gamma kernel determinantal measure. Adv. Math. 226(3), 2305–2350 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Osada H., Shirai T.: Absolute continuity and singularity of Palm measures of the Ginibre point process. Probab. Theory Relat. Fields 165(3–4), 725–770 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Peres Y., Virág B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta Math. 194(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schuster A.P., Varolin D.: Toeplitz operators and Carleson measures on generalized Bargmann-Fock spaces. Integral Equ. Oper. Theory 72(3), 363–392 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Shirai, T., Takahashi, Y.: Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress, vol. I, 15–23, Kluwer (2000)Google Scholar
  26. 26.
    Shirai T., Takahashi Y.: Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205(2), 414–463 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Soshnikov A.: Determinantal random point fields. Uspekhi Mat. Nauk 55(5(335)), 107–160 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Centrale Marseille, CNRS, I2M, UMR7373Aix-Marseille UniversitéMarseille Cedex 13France
  2. 2.Steklov Institute of MathematicsMoscowRussia
  3. 3.Institute for Information Transmission ProblemsMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.The Chebyshev LaboratorySaint-Petersburg State UniversitySaint-PetersburgRussia
  6. 6.CNRS, Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations