Advertisement

Communications in Mathematical Physics

, Volume 349, Issue 1, pp 1–45 | Cite as

On Complexity of the Quantum Ising Model

  • Sergey BravyiEmail author
  • Matthew Hastings
Article

Abstract

We study complexity of several problems related to the Transverse field Ising Model (TIM). First, we consider the problem of estimating the ground state energy known as the Local Hamiltonian Problem (LHP). It is shown that the LHP for TIM on degree-3 graphs is equivalent modulo polynomial reductions to the LHP for general k-local ‘stoquastic’ Hamiltonians with any constant \({k \ge 2}\). This result implies that estimating the ground state energy of TIM on degree-3 graphs is a complete problem for the complexity class \({\mathsf{StoqMA}}\) —an extension of the classical class \({\mathsf{MA}}\). As a corollary, we complete the complexity classification of 2-local Hamiltonians with a fixed set of interactions proposed recently by Cubitt and Montanaro. Secondly, we study quantum annealing algorithms for finding ground states of classical spin Hamiltonians associated with hard optimization problems. We prove that the quantum annealing with TIM Hamiltonians is equivalent modulo polynomial reductions to the quantum annealing with a certain subclass of k-local stoquastic Hamiltonians. This subclass includes all Hamiltonians representable as a sum of a k-local diagonal Hamiltonian and a 2-local stoquastic Hamiltonian.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitaev A., Shen A., Vyalyi M.: Classsical and Quantum Computation. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  2. 2.
    Oliveira R., Terhal B.M.: The complexity of quantum spin systems on a two-dimensional square lattice. Quant. Inf. Comput. 8(10), 900–924 (2008)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Aharonov D., Gottesman D., Irani S., Kempe J.: The power of quantum systems on a line. Commun. Math. Phys. 287(1), 41–65 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Hallgren S., Nagaj D., Narayanaswami S.: The local Hamiltonian problem on a line with eight states is QMA-complete. Quant. Inf. Comput. 13(9–10), 721–750 (2013)MathSciNetGoogle Scholar
  5. 5.
    Schuch N., Verstraete F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5(10), 732–735 (2009)CrossRefGoogle Scholar
  6. 6.
    Childs, A.M., Gosset, D., Webb, Z.: The Bose–Hubbard model is QMA-complete. In: Proceedings of the 41st International Colloqium on Automata, Languages, and Programming (ICALP), pp. 308–319 (2014)Google Scholar
  7. 7.
    Cubitt T., Montanaro A.: Complexity classification of local Hamiltonian problems. SIAM J. Comput. 45(2), 268–316 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bravyi S., DiVincenzo D., Oliveira R., Terhal B.: The complexity of stoquastic local Hamiltonian problems. Quant. Inf. Comput. 8(5), 0361–0385 (2008)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Suzuki M., Miyashita S., Kuroda A.: Monte Carlo simulation of quantum spin systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Prokof’ev N., Svistunov B., Tupitsyn I.: Exact quantum Monte Carlo process for the statistics of discrete systems. Pis’ma v Zh. Eks. Teor. Fiz. 64(12), 911–916 (1996)Google Scholar
  11. 11.
    Sandvik A.W., Kurkijärvi J.: Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 43(7), 5950 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    Trivedi N., Ceperley D.M.: Green-function Monte Carlo study of quantum antiferromagnets. Phys. Rev. B 40(4), 2737 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    Bravyi, S.: Monte Carlo simulation of stoquastic Hamiltonians. arXiv:1402.2295 (arXiv preprint) (2014)
  14. 14.
    Pfeuty P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    Sachdev S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kopeć T.K., Usadel K.D., Büttner G.: Instabilities in the quantum Sherrington–Kirkpatrick Ising spin glass in transverse and longitudinal fields. Phys. Rev. B 39(16), 12418 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Laumann C., Scardicchio A., Sondhi S.L.: Cavity method for quantum spin glasses on the Bethe lattice. Phys. Rev. B 78(13), 134424 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (arXiv preprint) (2000)
  19. 19.
    Boixo S., Rønnow T., Isakov S., Wang Z., Wecker D., Lidar D., Martinis J., Troyer M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)CrossRefGoogle Scholar
  20. 20.
    Rønnow T.F., Wang Z., Job J., Boixo S., Isakov S., Wecker D., Martinis J., Lidar D., Troyer M.: Defining and detecting quantum speedup. Science 345, 420 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Shin, S.W., Smith, G., Smolin, J., Vazirani, U.: How “quantum” is the D-wave machine? arXiv:1401.7087 (arXiv preprint) (2014)
  22. 22.
    Kempe J., Kitaev A., Regev O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Bravyi, S., Bessen, A.J., Terhal, B.M.: Merlin–Arthur games and stoquastic complexity. arXiv:quant-ph/0611021 (arXiv preprint) (2006)
  24. 24.
    Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Jansen S., Ruskai M.-B., Seiler R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Schrieffer J.R., Wolff P.A.: Relation between the Anderson and Kondo hamiltonians. Phys. Rev. 149(2), 491 (1966)ADSCrossRefGoogle Scholar
  27. 27.
    Bravyi S., DiVincenzo D.P., Loss D., Terhal B.M.: Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. Phys. Rev. Lett. 101(7), 070503 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Bravyi S., DiVincenzo D.P., Loss D.: Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 326(10), 2793–2826 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    von Gehlen G., Iorgov N., Pakuliak S., Shadura V., Tykhyy Yu.: Form-factors in the Baxter–Bazhanov–Stroganov model II: Ising model on the finite lattice. J. Phys. A Math. Theor. 41(9), 095003 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Isakov S., Hastings M.B., Melko R.: Topological entanglement entropy of a Bose–Hubbard spin liquid. Nat. Phys. 7(10), 772–775 (2011)CrossRefGoogle Scholar
  31. 31.
    Isakov S., Melko R., Hastings M.B.: Universal signatures of fractionalized quantum critical points. Science 335(6065), 193–195 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Cao Y., Nagaj D.: Perturbative gadgets without strong interactions. Quant. Inf. Comput. 15(13, 14), 1197–1222 (2015)MathSciNetGoogle Scholar
  33. 33.
    Hastings M.B.: Obstructions to classically simulating the quantum adiabatic algorithm. Quant. Inf. Comput. 13(11–12), 1038–1076 (2013)MathSciNetGoogle Scholar
  34. 34.
    Fendley P.: Free parafermions. J. Phys. A 47, 075001 (2014)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Quantum Architectures and Computation Group, Microsoft ResearchRedmondUSA

Personalised recommendations